OpenOCR-Demo / tools /eval_rec_all_ch.py
topdu's picture
openocr demo
29f689c
raw
history blame
7.55 kB
import csv
import os
import sys
import numpy as np
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))
from tools.data import build_dataloader
from tools.engine import Config, Trainer
from tools.utility import ArgsParser
def parse_args():
parser = ArgsParser()
args = parser.parse_args()
return args
def main():
FLAGS = parse_args()
cfg = Config(FLAGS.config)
FLAGS = vars(FLAGS)
opt = FLAGS.pop('opt')
cfg.merge_dict(FLAGS)
cfg.merge_dict(opt)
msr = False
if 'RatioDataSet' in cfg.cfg['Eval']['dataset']['name']:
msr = True
if cfg.cfg['Global']['output_dir'][-1] == '/':
cfg.cfg['Global']['output_dir'] = cfg.cfg['Global']['output_dir'][:-1]
if cfg.cfg['Global']['pretrained_model'] is None:
cfg.cfg['Global'][
'pretrained_model'] = cfg.cfg['Global']['output_dir'] + '/best.pth'
cfg.cfg['Global']['use_amp'] = False
cfg.cfg['PostProcess']['with_ratio'] = True
cfg.cfg['Metric']['with_ratio'] = True
cfg.cfg['Metric']['max_len'] = 25
cfg.cfg['Metric']['max_ratio'] = 12
cfg.cfg['Eval']['dataset']['transforms'][-1]['KeepKeys'][
'keep_keys'].append('real_ratio')
trainer = Trainer(cfg, mode='eval')
best_model_dict = trainer.status.get('metrics', {})
trainer.logger.info('metric in ckpt ***************')
for k, v in best_model_dict.items():
trainer.logger.info('{}:{}'.format(k, v))
data_dirs_list = [[
'../benchmark_bctr/benchmark_bctr_test/scene_test',
'../benchmark_bctr/benchmark_bctr_test/web_test',
'../benchmark_bctr/benchmark_bctr_test/document_test',
'../benchmark_bctr/benchmark_bctr_test/handwriting_test'
]]
cfg = cfg.cfg
file_csv = open(
cfg['Global']['output_dir'] + '/' +
cfg['Global']['output_dir'].split('/')[-1] +
'_eval_all_ch_length_ratio.csv', 'w')
csv_w = csv.writer(file_csv)
for data_dirs in data_dirs_list:
acc_each = []
acc_each_real = []
acc_each_ingore_space = []
acc_each_ignore_space_symbol = []
acc_each_lower_ignore_space_symbol = []
acc_each_num = []
acc_each_dis = []
each_len = {}
each_ratio = {}
for datadir in data_dirs:
config_each = cfg.copy()
if msr:
config_each['Eval']['dataset']['data_dir_list'] = [datadir]
else:
config_each['Eval']['dataset']['data_dir'] = datadir
# config_each['Eval']['dataset']['label_file_list']=[label_file_list]
valid_dataloader = build_dataloader(config_each, 'Eval',
trainer.logger)
trainer.logger.info(
f'{datadir} valid dataloader has {len(valid_dataloader)} iters'
)
# valid_dataloaders.append(valid_dataloader)
trainer.valid_dataloader = valid_dataloader
metric = trainer.eval()
acc_each.append(metric['acc'] * 100)
acc_each_real.append(metric['acc_real'] * 100)
acc_each_ingore_space.append(metric['acc_ignore_space'] * 100)
acc_each_ignore_space_symbol.append(
metric['acc_ignore_space_symbol'] * 100)
acc_each_lower_ignore_space_symbol.append(
metric['acc_lower_ignore_space_symbol'] * 100)
acc_each_dis.append(metric['norm_edit_dis'])
acc_each_num.append(metric['num_samples'])
trainer.logger.info('metric eval ***************')
csv_w.writerow([datadir])
for k, v in metric.items():
trainer.logger.info('{}:{}'.format(k, v))
if 'each' in k:
csv_w.writerow([k] + v)
if 'each_len' in k:
each_len[k] = each_len.get(k, []) + [np.array(v)]
if 'each_ratio' in k:
each_ratio[k] = each_ratio.get(k, []) + [np.array(v)]
data_name = [
data_n[:-1].split('/')[-1]
if data_n[-1] == '/' else data_n.split('/')[-1]
for data_n in data_dirs
]
csv_w.writerow(['-'] + data_name + ['arithmetic_avg'] +
['weighted_avg'])
csv_w.writerow([''] + acc_each_num)
avg1 = np.array(acc_each) * np.array(acc_each_num) / sum(acc_each_num)
csv_w.writerow(['acc'] + acc_each + [sum(acc_each) / len(acc_each)] +
[avg1.sum().tolist()])
print(acc_each + [sum(acc_each) / len(acc_each)] +
[avg1.sum().tolist()])
avg1 = np.array(acc_each_dis) * np.array(acc_each_num) / sum(
acc_each_num)
csv_w.writerow(['norm_edit_dis'] + acc_each_dis +
[sum(acc_each_dis) / len(acc_each)] +
[avg1.sum().tolist()])
avg1 = np.array(acc_each_real) * np.array(acc_each_num) / sum(
acc_each_num)
csv_w.writerow(['acc_real'] + acc_each_real +
[sum(acc_each_real) / len(acc_each_real)] +
[avg1.sum().tolist()])
avg1 = np.array(acc_each_ingore_space) * np.array(acc_each_num) / sum(
acc_each_num)
csv_w.writerow(
['acc_ignore_space'] + acc_each_ingore_space +
[sum(acc_each_ingore_space) / len(acc_each_ingore_space)] +
[avg1.sum().tolist()])
avg1 = np.array(acc_each_ignore_space_symbol) * np.array(
acc_each_num) / sum(acc_each_num)
csv_w.writerow(['acc_ignore_space_symbol'] +
acc_each_ignore_space_symbol + [
sum(acc_each_ignore_space_symbol) /
len(acc_each_ignore_space_symbol)
] + [avg1.sum().tolist()])
avg1 = np.array(acc_each_lower_ignore_space_symbol) * np.array(
acc_each_num) / sum(acc_each_num)
csv_w.writerow(['acc_lower_ignore_space_symbol'] +
acc_each_lower_ignore_space_symbol + [
sum(acc_each_lower_ignore_space_symbol) /
len(acc_each_lower_ignore_space_symbol)
] + [avg1.sum().tolist()])
sum_all = np.array(each_len['each_len_num']).sum(0)
for k, v in each_len.items():
if k != 'each_len_num':
v_sum_weight = (np.array(v) *
np.array(each_len['each_len_num'])).sum(0)
sum_all_pad = np.where(sum_all == 0, 1., sum_all)
v_all = v_sum_weight / sum_all_pad
v_all = np.where(sum_all == 0, 0., v_all)
csv_w.writerow([k] + v_all.tolist())
else:
csv_w.writerow([k] + sum_all.tolist())
sum_all = np.array(each_ratio['each_ratio_num']).sum(0)
for k, v in each_ratio.items():
if k != 'each_ratio_num':
v_sum_weight = (np.array(v) *
np.array(each_ratio['each_ratio_num'])).sum(0)
sum_all_pad = np.where(sum_all == 0, 1., sum_all)
v_all = v_sum_weight / sum_all_pad
v_all = np.where(sum_all == 0, 0., v_all)
csv_w.writerow([k] + v_all.tolist())
else:
csv_w.writerow([k] + sum_all.tolist())
file_csv.close()
if __name__ == '__main__':
main()