Spaces:
Running
Running
Global: | |
device: gpu | |
epoch_num: 20 | |
log_smooth_window: 20 | |
print_batch_step: 10 | |
output_dir: ./output/rec/svtrv2_lnconv_nrtr_gtc | |
save_epoch_step: 1 | |
# evaluation is run every 2000 iterations | |
eval_batch_step: [0, 500] | |
eval_epoch_step: [0, 1] | |
cal_metric_during_train: True | |
pretrained_model: | |
checkpoints: | |
use_tensorboard: false | |
infer_img: ../ltb/img | |
# for data or label process | |
character_dict_path: &character_dict_path ./tools/utils/EN_symbol_dict.txt # 96en | |
# ./tools/utils/ppocr_keys_v1.txt # ch | |
max_text_length: &max_text_length 25 | |
use_space_char: &use_space_char False | |
save_res_path: ./output/rec/predicts_smtr.txt | |
use_amp: True | |
distributed: true | |
Optimizer: | |
name: AdamW | |
lr: 0.00065 | |
weight_decay: 0.05 | |
filter_bias_and_bn: True | |
LRScheduler: | |
name: OneCycleLR | |
warmup_epoch: 1.5 # pct_start 0.075*20 = 1.5ep | |
cycle_momentum: False | |
Architecture: | |
model_type: rec | |
algorithm: BGPD | |
in_channels: 3 | |
Transform: | |
Encoder: | |
name: SVTRv2LNConvTwo33 | |
use_pos_embed: False | |
out_channels: 256 | |
dims: [128, 256, 384] | |
depths: [6, 6, 6] | |
num_heads: [4, 8, 12] | |
mixer: [['Conv','Conv','Conv','Conv','Conv','Conv'],['Conv','Conv','FGlobal','Global','Global','Global'],['Global','Global','Global','Global','Global','Global']] | |
local_k: [[5, 5], [5, 5], [-1, -1]] | |
sub_k: [[1, 1], [2, 1], [-1, -1]] | |
last_stage: false | |
feat2d: True | |
Decoder: | |
name: GTCDecoder | |
infer_gtc: True | |
detach: False | |
gtc_decoder: | |
name: NRTRDecoder | |
num_encoder_layers: -1 | |
beam_size: 0 | |
num_decoder_layers: 2 | |
nhead: 12 | |
max_len: | |
ctc_decoder: | |
name: RCTCDecoder | |
Loss: | |
name: GTCLoss | |
gtc_loss: | |
name: ARLoss | |
PostProcess: | |
name: GTCLabelDecode | |
gtc_label_decode: | |
name: ARLabelDecode | |
character_dict_path: | |
use_space_char: | |
Metric: | |
name: RecGTCMetric | |
main_indicator: acc | |
is_filter: True | |
Train: | |
dataset: | |
name: RatioDataSet | |
ds_width: True | |
# max_ratio: &max_ratio 4 | |
# min_ratio: 1 | |
# base_shape: &base_shape [[64, 64], [96, 48], [112, 40], [128, 32]] | |
# base_h: &base_h 32 | |
# padding: &padding False | |
padding: false | |
# padding_rand: true | |
# padding_doub: true | |
data_dir_list: ['../Union14M-L-LMDB-Filtered/filter_train_challenging', | |
'../Union14M-L-LMDB-Filtered/filter_train_hard', | |
'../Union14M-L-LMDB-Filtered/filter_train_medium', | |
'../Union14M-L-LMDB-Filtered/filter_train_normal', | |
'../Union14M-L-LMDB-Filtered/filter_train_easy', | |
] | |
transforms: | |
- DecodeImage: # load image | |
img_mode: BGR | |
channel_first: False | |
- PARSeqAug: | |
- GTCLabelEncode: # Class handling label | |
gtc_label_encode: | |
name: ARLabelEncode | |
character_dict_path: | |
use_space_char: | |
max_text_length: | |
- KeepKeys: | |
keep_keys: ['image', 'label', 'length', 'ctc_label', 'ctc_length'] # dataloader will return list in this order | |
sampler: | |
name: RatioSampler | |
scales: [[128, 32]] # w, h | |
# divide_factor: to ensure the width and height dimensions can be devided by downsampling multiple | |
first_bs: &bs 256 | |
fix_bs: false | |
divided_factor: [4, 16] # w, h | |
is_training: True | |
loader: | |
shuffle: True | |
batch_size_per_card: | |
drop_last: True | |
max_ratio: &max_ratio 4 | |
num_workers: 4 | |
Eval: | |
dataset: | |
name: RatioDataSet | |
ds_width: True | |
padding: False | |
data_dir_list: [ | |
'../evaluation/CUTE80', | |
'../evaluation/IC13_857', | |
'../evaluation/IC15_1811', | |
'../evaluation/IIIT5k', | |
'../evaluation/SVT', | |
'../evaluation/SVTP', | |
] | |
transforms: | |
- DecodeImage: # load image | |
img_mode: BGR | |
channel_first: False | |
- GTCLabelEncode: # Class handling label | |
gtc_label_encode: | |
name: ARLabelEncode | |
character_dict_path: | |
use_space_char: | |
max_text_length: | |
- KeepKeys: | |
keep_keys: ['image', 'label', 'length', 'ctc_label', 'ctc_length'] # dataloader will return list in this order | |
sampler: | |
name: RatioSampler | |
scales: [[128, 32]] # w, h | |
# divide_factor: to ensure the width and height dimensions can be devided by downsampling multiple | |
first_bs: | |
fix_bs: false | |
divided_factor: [4, 16] # w, h | |
is_training: False | |
loader: | |
shuffle: False | |
drop_last: False | |
batch_size_per_card: | |
max_ratio: | |
num_workers: 4 | |