Spaces:
Running
Running
Global: | |
device: gpu | |
epoch_num: 20 | |
log_smooth_window: 20 | |
print_batch_step: 10 | |
output_dir: ./output/rec/u14m_filter/resnet45_trans_matrn/ | |
eval_epoch_step: [0, 1] | |
eval_batch_step: [0, 500] | |
cal_metric_during_train: True | |
pretrained_model: | |
# ./openocr_nolang_abinet_lang.pth | |
checkpoints: | |
use_tensorboard: false | |
infer_img: | |
# for data or label process | |
character_dict_path: ./tools/utils/EN_symbol_dict.txt | |
max_text_length: 25 | |
use_space_char: False | |
save_res_path: ./output/rec/u14m_filter/predicts_resnet45_trans_matrn.txt | |
grad_clip_val: 20 | |
use_amp: True | |
Optimizer: | |
name: Adam | |
lr: 0.000133 # 4gpus 128bs/gpu | |
weight_decay: 0.0 | |
filter_bias_and_bn: False | |
LRScheduler: | |
name: MultiStepLR | |
milestones: [12, 18] | |
gamma: 0.1 | |
Architecture: | |
model_type: rec | |
algorithm: MATRN | |
Transform: | |
Encoder: | |
name: ResNet45 | |
in_channels: 3 | |
strides: [2, 1, 2, 1, 1] | |
Decoder: | |
name: MATRNDecoder | |
iter_size: 3 | |
Loss: | |
name: ABINetLoss | |
align_weight: 3.0 | |
PostProcess: | |
name: ABINetLabelDecode | |
Metric: | |
name: RecMetric | |
main_indicator: acc | |
is_filter: True | |
Train: | |
dataset: | |
name: LMDBDataSet | |
data_dir: ../Union14M-L-LMDB-Filtered | |
transforms: | |
- DecodeImagePIL: # load image | |
img_mode: RGB | |
- PARSeqAugPIL: | |
- ABINetLabelEncode: | |
- RecTVResize: | |
image_shape: [32, 128] | |
padding: False | |
- KeepKeys: | |
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order | |
loader: | |
shuffle: True | |
batch_size_per_card: 128 | |
drop_last: True | |
num_workers: 4 | |
Eval: | |
dataset: | |
name: LMDBDataSet | |
data_dir: ../evaluation | |
transforms: | |
- DecodeImagePIL: # load image | |
img_mode: RGB | |
- ABINetLabelEncode: | |
- RecTVResize: | |
image_shape: [32, 128] | |
padding: False | |
- KeepKeys: | |
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order | |
loader: | |
shuffle: False | |
drop_last: False | |
batch_size_per_card: 256 | |
num_workers: 2 | |