OpenOCR-Demo / configs /rec /nrtr /svtr_base_nrtr.yml
topdu's picture
openocr demo
29f689c
raw
history blame
3.05 kB
Global:
device: gpu
epoch_num: 20
log_smooth_window: 20
print_batch_step: 10
output_dir: ./output/rec/u14m_filter/svtr_base_nrtr/
save_epoch_step: 1
# evaluation is run every 2000 iterations
eval_batch_step: [0, 500]
eval_epoch_step: [0, 1]
cal_metric_during_train: True
pretrained_model:
checkpoints:
use_tensorboard: false
infer_img:
# for data or label process
character_dict_path: &character_dict_path ./tools/utils/EN_symbol_dict.txt # 96en
# ./tools/utils/ppocr_keys_v1.txt # ch
max_text_length: &max_text_length 25
use_space_char: &use_space_char False
save_res_path: ./output/rec/u14m_filter/predicts_svtr_base_nrtr.txt
use_amp: True
Optimizer:
name: AdamW
lr: 0.00065 # for 4gpus bs256/gpu
weight_decay: 0.05
filter_bias_and_bn: True
LRScheduler:
name: OneCycleLR
warmup_epoch: 1.5 # pct_start 0.075*20 = 1.5ep
cycle_momentum: False
Architecture:
model_type: rec
algorithm: NRTR
in_channels: 3
Transform:
Encoder:
name: SVTRNet
img_size: [32, 128]
out_char_num: 25
out_channels: 256
patch_merging: 'Conv'
embed_dim: [128, 256, 384]
depth: [6, 6, 6]
num_heads: [4, 8, 12]
mixer: ['Conv','Conv','Conv','Conv','Conv','Conv', 'Conv','Conv', 'Global','Global','Global','Global','Global','Global','Global','Global','Global','Global']
local_mixer: [[5, 5], [5, 5], [5, 5]]
last_stage: False
prenorm: True
Decoder:
name: NRTRDecoder
num_encoder_layers: -1
beam_size: 0
num_decoder_layers: 2
nhead: 12
max_len: *max_text_length
Loss:
name: ARLoss
PostProcess:
name: ARLabelDecode
character_dict_path: *character_dict_path
use_space_char: *use_space_char
Metric:
name: RecMetric
main_indicator: acc
is_filter: True
Train:
dataset:
name: LMDBDataSet
data_dir: ../Union14M-L-LMDB-Filtered
transforms:
- DecodeImagePIL: # load image
img_mode: RGB
- PARSeqAugPIL:
- ARLabelEncode: # Class handling label
character_dict_path: *character_dict_path
use_space_char: *use_space_char
max_text_length: *max_text_length
- RecTVResize:
image_shape: [32, 128]
padding: False
- KeepKeys:
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
loader:
shuffle: True
batch_size_per_card: 256
drop_last: True
num_workers: 4
Eval:
dataset:
name: LMDBDataSet
data_dir: ../evaluation/
transforms:
- DecodeImagePIL: # load image
img_mode: RGB
- ARLabelEncode: # Class handling label
character_dict_path: *character_dict_path
use_space_char: *use_space_char
max_text_length: *max_text_length
- RecTVResize:
image_shape: [32, 128]
padding: False
- KeepKeys:
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
loader:
shuffle: False
drop_last: False
batch_size_per_card: 256
num_workers: 2