OpenOCR-Demo / configs /rec /smtr /focalsvtr_smtr.yml
topdu's picture
openocr demo
29f689c
raw
history blame
4.22 kB
Global:
device: gpu
epoch_num: 20
log_smooth_window: 20
print_batch_step: 10
output_dir: ./output/rec/u14m_filter/focalsvtr_smtr_maxratio12
save_epoch_step: 1
# evaluation is run every 2000 iterations
eval_batch_step: [0, 500]
eval_epoch_step: [0, 1]
cal_metric_during_train: True
pretrained_model: ./output/rec/focalsvtr_smtr/best.pth
# ./output/focalnet_subs_nocmff_20ep_u14m_k8_max_ratio12_h8_norand1_h2_padrand_doub_96/best.pth
# ./output/rec/focalsvtr_smtr/best.pth
checkpoints:
use_tensorboard: false
infer_img: ../ltb/img
# for data or label process
character_dict_path: &character_dict_path ./tools/utils/EN_symbol_dict.txt # 96en
# ./tools/utils/ppocr_keys_v1.txt # ch
max_text_length: &max_text_length 25
use_space_char: &use_space_char False
save_res_path: ./output/rec/u14m_filter/predicts_focalsvtr_smtr_maxratio12.txt
use_amp: True
Optimizer:
name: AdamW
lr: 0.00065 # for 4gpus bs256/gpu
weight_decay: 0.05
filter_bias_and_bn: True
LRScheduler:
name: OneCycleLR
warmup_epoch: 1.5 # pct_start 0.075*20 = 1.5ep
cycle_momentum: False
Architecture:
model_type: rec
algorithm: SMTR
in_channels: 3
Transform:
Encoder:
name: FocalSVTR
img_size: [32, 128]
depths: [6, 6, 6]
embed_dim: 96
sub_k: [[1, 1], [2, 1], [1, 1]]
focal_levels: [3, 3, 3]
last_stage: False
Decoder:
name: SMTRDecoder
num_layer: 1
ds: True
max_len: *max_text_length
next_mode: &next True
sub_str_len: &subsl 5
Loss:
name: SMTRLoss
PostProcess:
name: SMTRLabelDecode
next_mode: *next
character_dict_path: *character_dict_path
use_space_char: *use_space_char
Metric:
name: RecMetric
main_indicator: acc
is_filter: True
Train:
dataset:
name: RatioDataSet
ds_width: True
padding: &padding True
padding_rand: True
padding_doub: True
data_dir_list: ['../Union14M-L-LMDB-Filtered/filter_train_challenging',
'../Union14M-L-LMDB-Filtered/filter_train_hard',
'../Union14M-L-LMDB-Filtered/filter_train_medium',
'../Union14M-L-LMDB-Filtered/filter_train_normal',
'../Union14M-L-LMDB-Filtered/filter_train_easy',
]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- PARSeqAug:
- SMTRLabelEncode: # Class handling label
sub_str_len: *subsl
character_dict_path: *character_dict_path
use_space_char: *use_space_char
max_text_length: *max_text_length
- KeepKeys:
keep_keys: ['image', 'label', 'label_subs', 'label_next', 'length_subs',
'label_subs_pre', 'label_next_pre', 'length_subs_pre', 'length'] # dataloader will return list in this order
sampler:
name: RatioSampler
scales: [[128, 32]] # w, h
# divide_factor: to ensure the width and height dimensions can be devided by downsampling multiple
first_bs: &bs 256
fix_bs: false
divided_factor: [4, 16] # w, h
is_training: True
loader:
shuffle: True
batch_size_per_card: *bs
drop_last: True
max_ratio: &max_ratio 12
num_workers: 4
Eval:
dataset:
name: RatioDataSet
ds_width: True
padding: False
padding_rand: False
data_dir_list: [
'../evaluation/CUTE80',
'../evaluation/IC13_857',
'../evaluation/IC15_1811',
'../evaluation/IIIT5k',
'../evaluation/SVT',
'../evaluation/SVTP',
]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- ARLabelEncode: # Class handling label
character_dict_path: *character_dict_path
use_space_char: *use_space_char
max_text_length: *max_text_length
- KeepKeys:
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
sampler:
name: RatioSampler
scales: [[128, 32]] # w, h
# divide_factor: to ensure the width and height dimensions can be devided by downsampling multiple
first_bs: 128
fix_bs: false
divided_factor: [4, 16] # w, h
is_training: False
loader:
shuffle: False
drop_last: False
max_ratio: *max_ratio
batch_size_per_card: 128
num_workers: 4