Spaces:
Running
Running
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
class Head(nn.Module): | |
def __init__(self, in_channels, kernel_list=[3, 2, 2], **kwargs): | |
super(Head, self).__init__() | |
self.conv1 = nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=in_channels // 4, | |
kernel_size=kernel_list[0], | |
padding=int(kernel_list[0] // 2), | |
bias=False, | |
) | |
self.conv_bn1 = nn.BatchNorm2d(num_features=in_channels // 4, ) | |
self.conv2 = nn.ConvTranspose2d( | |
in_channels=in_channels // 4, | |
out_channels=in_channels // 4, | |
kernel_size=kernel_list[1], | |
stride=2, | |
) | |
self.conv_bn2 = nn.BatchNorm2d(num_features=in_channels // 4, ) | |
self.conv3 = nn.ConvTranspose2d( | |
in_channels=in_channels // 4, | |
out_channels=1, | |
kernel_size=kernel_list[2], | |
stride=2, | |
) | |
def forward(self, x, return_f=False): | |
x = self.conv1(x) | |
x = F.relu(self.conv_bn1(x)) | |
x = self.conv2(x) | |
x = F.relu(self.conv_bn2(x)) | |
if return_f is True: | |
f = x | |
x = self.conv3(x) | |
x = torch.sigmoid(x) | |
if return_f is True: | |
return x, f | |
return x | |
class DBHead(nn.Module): | |
""" | |
Differentiable Binarization (DB) for text detection: | |
see https://arxiv.org/abs/1911.08947 | |
args: | |
params(dict): super parameters for build DB network | |
""" | |
def __init__(self, in_channels, k=50, **kwargs): | |
super(DBHead, self).__init__() | |
self.k = k | |
self.binarize = Head(in_channels, **kwargs) | |
self.thresh = Head(in_channels, **kwargs) | |
def step_function(self, x, y): | |
return torch.reciprocal(1 + torch.exp(-self.k * (x - y))) | |
def forward(self, x, data=None): | |
shrink_maps = self.binarize(x) | |
if not self.training: | |
return {'maps': shrink_maps} | |
threshold_maps = self.thresh(x) | |
binary_maps = self.step_function(shrink_maps, threshold_maps) | |
y = torch.concat([shrink_maps, threshold_maps, binary_maps], dim=1) | |
return {'maps': y} | |