OpenOCR-Demo / opendet /postprocess /db_postprocess.py
topdu's picture
update app
695a4a4
raw
history blame
9.68 kB
import numpy as np
import cv2
import torch
from shapely.geometry import Polygon
import pyclipper
"""
This code is refered from:
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/post_processing/seg_detector_representer.py
"""
class DBPostProcess(object):
"""
The post process for Differentiable Binarization (DB).
"""
def __init__(
self,
thresh=0.3,
box_thresh=0.7,
max_candidates=1000,
unclip_ratio=2.0,
use_dilation=False,
score_mode='fast',
box_type='quad',
**kwargs,
):
self.thresh = thresh
self.box_thresh = box_thresh
self.max_candidates = max_candidates
self.unclip_ratio = unclip_ratio
self.min_size = 3
self.score_mode = score_mode
self.box_type = box_type
assert score_mode in [
'slow',
'fast',
], 'Score mode must be in [slow, fast] but got: {}'.format(score_mode)
self.dilation_kernel = None if not use_dilation else np.array([[1, 1],
[1, 1]])
def polygons_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
"""
_bitmap: single map with shape (1, H, W),
whose values are binarized as {0, 1}
"""
bitmap = _bitmap
height, width = bitmap.shape
boxes = []
scores = []
contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8),
cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours[:self.max_candidates]:
epsilon = 0.002 * cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, epsilon, True)
points = approx.reshape((-1, 2))
if points.shape[0] < 4:
continue
score = self.box_score_fast(pred, points.reshape(-1, 2))
if self.box_thresh > score:
continue
if points.shape[0] > 2:
box = self.unclip(points, self.unclip_ratio)
if len(box) > 1:
continue
else:
continue
box = np.array(box).reshape(-1, 2)
if len(box) == 0:
continue
_, sside = self.get_mini_boxes(box.reshape((-1, 1, 2)))
if sside < self.min_size + 2:
continue
box = np.array(box)
box[:, 0] = np.clip(np.round(box[:, 0] / width * dest_width), 0,
dest_width)
box[:, 1] = np.clip(np.round(box[:, 1] / height * dest_height), 0,
dest_height)
boxes.append(box.tolist())
scores.append(score)
return boxes, scores
def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
"""
_bitmap: single map with shape (1, H, W),
whose values are binarized as {0, 1}
"""
bitmap = _bitmap
height, width = bitmap.shape
outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
if len(outs) == 3:
img, contours, _ = outs[0], outs[1], outs[2]
elif len(outs) == 2:
contours, _ = outs[0], outs[1]
num_contours = min(len(contours), self.max_candidates)
boxes = []
scores = []
for index in range(num_contours):
contour = contours[index]
points, sside = self.get_mini_boxes(contour)
if sside < self.min_size:
continue
points = np.array(points)
if self.score_mode == 'fast':
score = self.box_score_fast(pred, points.reshape(-1, 2))
else:
score = self.box_score_slow(pred, contour)
if self.box_thresh > score:
continue
box = self.unclip(points, self.unclip_ratio)
if len(box) > 1:
continue
box = np.array(box).reshape(-1, 1, 2)
box, sside = self.get_mini_boxes(box)
if sside < self.min_size + 2:
continue
box = np.array(box)
box[:, 0] = np.clip(np.round(box[:, 0] / width * dest_width), 0,
dest_width)
box[:, 1] = np.clip(np.round(box[:, 1] / height * dest_height), 0,
dest_height)
boxes.append(box.astype('int32'))
scores.append(score)
return np.array(boxes, dtype='int32'), scores
def unclip(self, box, unclip_ratio):
poly = Polygon(box)
distance = poly.area * unclip_ratio / poly.length
offset = pyclipper.PyclipperOffset()
offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
expanded = offset.Execute(distance)
return expanded
def get_mini_boxes(self, contour):
bounding_box = cv2.minAreaRect(contour)
points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
index_1, index_2, index_3, index_4 = 0, 1, 2, 3
if points[1][1] > points[0][1]:
index_1 = 0
index_4 = 1
else:
index_1 = 1
index_4 = 0
if points[3][1] > points[2][1]:
index_2 = 2
index_3 = 3
else:
index_2 = 3
index_3 = 2
box = [
points[index_1], points[index_2], points[index_3], points[index_4]
]
return box, min(bounding_box[1])
def box_score_fast(self, bitmap, _box):
"""
box_score_fast: use bbox mean score as the mean score
"""
h, w = bitmap.shape[:2]
box = _box.copy()
xmin = np.clip(np.floor(box[:, 0].min()).astype('int32'), 0, w - 1)
xmax = np.clip(np.ceil(box[:, 0].max()).astype('int32'), 0, w - 1)
ymin = np.clip(np.floor(box[:, 1].min()).astype('int32'), 0, h - 1)
ymax = np.clip(np.ceil(box[:, 1].max()).astype('int32'), 0, h - 1)
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
box[:, 0] = box[:, 0] - xmin
box[:, 1] = box[:, 1] - ymin
cv2.fillPoly(mask, box.reshape(1, -1, 2).astype('int32'), 1)
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
def box_score_slow(self, bitmap, contour):
"""
box_score_slow: use polyon mean score as the mean score
"""
h, w = bitmap.shape[:2]
contour = contour.copy()
contour = np.reshape(contour, (-1, 2))
xmin = np.clip(np.min(contour[:, 0]), 0, w - 1)
xmax = np.clip(np.max(contour[:, 0]), 0, w - 1)
ymin = np.clip(np.min(contour[:, 1]), 0, h - 1)
ymax = np.clip(np.max(contour[:, 1]), 0, h - 1)
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
contour[:, 0] = contour[:, 0] - xmin
contour[:, 1] = contour[:, 1] - ymin
cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype('int32'), 1)
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
def __call__(self, outs_dict, shape_list, **kwargs):
self.thresh= kwargs.get('thresh', self.thresh)
self.box_thresh = kwargs.get('box_thresh', self.box_thresh)
self.unclip_ratio = kwargs.get('unclip_ratio', self.unclip_ratio)
self.box_type = kwargs.get('box_type', self.box_type)
self.score_mode = kwargs.get('score_mode', self.score_mode)
pred = outs_dict['maps']
if isinstance(pred, torch.Tensor):
pred = pred.detach().cpu().numpy()
pred = pred[:, 0, :, :]
segmentation = pred > self.thresh
boxes_batch = []
for batch_index in range(pred.shape[0]):
src_h, src_w, ratio_h, ratio_w = shape_list[batch_index]
if self.dilation_kernel is not None:
mask = cv2.dilate(
np.array(segmentation[batch_index]).astype(np.uint8),
self.dilation_kernel,
)
else:
mask = segmentation[batch_index]
if self.box_type == 'poly':
boxes, scores = self.polygons_from_bitmap(
pred[batch_index], mask, src_w, src_h)
elif self.box_type == 'quad':
boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask,
src_w, src_h)
else:
raise ValueError(
"box_type can only be one of ['quad', 'poly']")
boxes_batch.append({'points': boxes})
return boxes_batch
class DistillationDBPostProcess(object):
def __init__(
self,
model_name=['student'],
key=None,
thresh=0.3,
box_thresh=0.6,
max_candidates=1000,
unclip_ratio=1.5,
use_dilation=False,
score_mode='fast',
box_type='quad',
**kwargs,
):
self.model_name = model_name
self.key = key
self.post_process = DBPostProcess(
thresh=thresh,
box_thresh=box_thresh,
max_candidates=max_candidates,
unclip_ratio=unclip_ratio,
use_dilation=use_dilation,
score_mode=score_mode,
box_type=box_type,
)
def __call__(self, predicts, shape_list):
results = {}
for k in self.model_name:
results[k] = self.post_process(predicts[k], shape_list=shape_list)
return results