Spaces:
Running
Running
import numpy as np | |
import cv2 | |
import torch | |
from shapely.geometry import Polygon | |
import pyclipper | |
""" | |
This code is refered from: | |
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/post_processing/seg_detector_representer.py | |
""" | |
class DBPostProcess(object): | |
""" | |
The post process for Differentiable Binarization (DB). | |
""" | |
def __init__( | |
self, | |
thresh=0.3, | |
box_thresh=0.7, | |
max_candidates=1000, | |
unclip_ratio=2.0, | |
use_dilation=False, | |
score_mode='fast', | |
box_type='quad', | |
**kwargs, | |
): | |
self.thresh = thresh | |
self.box_thresh = box_thresh | |
self.max_candidates = max_candidates | |
self.unclip_ratio = unclip_ratio | |
self.min_size = 3 | |
self.score_mode = score_mode | |
self.box_type = box_type | |
assert score_mode in [ | |
'slow', | |
'fast', | |
], 'Score mode must be in [slow, fast] but got: {}'.format(score_mode) | |
self.dilation_kernel = None if not use_dilation else np.array([[1, 1], | |
[1, 1]]) | |
def polygons_from_bitmap(self, pred, _bitmap, dest_width, dest_height): | |
""" | |
_bitmap: single map with shape (1, H, W), | |
whose values are binarized as {0, 1} | |
""" | |
bitmap = _bitmap | |
height, width = bitmap.shape | |
boxes = [] | |
scores = [] | |
contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8), | |
cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) | |
for contour in contours[:self.max_candidates]: | |
epsilon = 0.002 * cv2.arcLength(contour, True) | |
approx = cv2.approxPolyDP(contour, epsilon, True) | |
points = approx.reshape((-1, 2)) | |
if points.shape[0] < 4: | |
continue | |
score = self.box_score_fast(pred, points.reshape(-1, 2)) | |
if self.box_thresh > score: | |
continue | |
if points.shape[0] > 2: | |
box = self.unclip(points, self.unclip_ratio) | |
if len(box) > 1: | |
continue | |
else: | |
continue | |
box = np.array(box).reshape(-1, 2) | |
if len(box) == 0: | |
continue | |
_, sside = self.get_mini_boxes(box.reshape((-1, 1, 2))) | |
if sside < self.min_size + 2: | |
continue | |
box = np.array(box) | |
box[:, 0] = np.clip(np.round(box[:, 0] / width * dest_width), 0, | |
dest_width) | |
box[:, 1] = np.clip(np.round(box[:, 1] / height * dest_height), 0, | |
dest_height) | |
boxes.append(box.tolist()) | |
scores.append(score) | |
return boxes, scores | |
def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height): | |
""" | |
_bitmap: single map with shape (1, H, W), | |
whose values are binarized as {0, 1} | |
""" | |
bitmap = _bitmap | |
height, width = bitmap.shape | |
outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST, | |
cv2.CHAIN_APPROX_SIMPLE) | |
if len(outs) == 3: | |
img, contours, _ = outs[0], outs[1], outs[2] | |
elif len(outs) == 2: | |
contours, _ = outs[0], outs[1] | |
num_contours = min(len(contours), self.max_candidates) | |
boxes = [] | |
scores = [] | |
for index in range(num_contours): | |
contour = contours[index] | |
points, sside = self.get_mini_boxes(contour) | |
if sside < self.min_size: | |
continue | |
points = np.array(points) | |
if self.score_mode == 'fast': | |
score = self.box_score_fast(pred, points.reshape(-1, 2)) | |
else: | |
score = self.box_score_slow(pred, contour) | |
if self.box_thresh > score: | |
continue | |
box = self.unclip(points, self.unclip_ratio) | |
if len(box) > 1: | |
continue | |
box = np.array(box).reshape(-1, 1, 2) | |
box, sside = self.get_mini_boxes(box) | |
if sside < self.min_size + 2: | |
continue | |
box = np.array(box) | |
box[:, 0] = np.clip(np.round(box[:, 0] / width * dest_width), 0, | |
dest_width) | |
box[:, 1] = np.clip(np.round(box[:, 1] / height * dest_height), 0, | |
dest_height) | |
boxes.append(box.astype('int32')) | |
scores.append(score) | |
return np.array(boxes, dtype='int32'), scores | |
def unclip(self, box, unclip_ratio): | |
poly = Polygon(box) | |
distance = poly.area * unclip_ratio / poly.length | |
offset = pyclipper.PyclipperOffset() | |
offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) | |
expanded = offset.Execute(distance) | |
return expanded | |
def get_mini_boxes(self, contour): | |
bounding_box = cv2.minAreaRect(contour) | |
points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0]) | |
index_1, index_2, index_3, index_4 = 0, 1, 2, 3 | |
if points[1][1] > points[0][1]: | |
index_1 = 0 | |
index_4 = 1 | |
else: | |
index_1 = 1 | |
index_4 = 0 | |
if points[3][1] > points[2][1]: | |
index_2 = 2 | |
index_3 = 3 | |
else: | |
index_2 = 3 | |
index_3 = 2 | |
box = [ | |
points[index_1], points[index_2], points[index_3], points[index_4] | |
] | |
return box, min(bounding_box[1]) | |
def box_score_fast(self, bitmap, _box): | |
""" | |
box_score_fast: use bbox mean score as the mean score | |
""" | |
h, w = bitmap.shape[:2] | |
box = _box.copy() | |
xmin = np.clip(np.floor(box[:, 0].min()).astype('int32'), 0, w - 1) | |
xmax = np.clip(np.ceil(box[:, 0].max()).astype('int32'), 0, w - 1) | |
ymin = np.clip(np.floor(box[:, 1].min()).astype('int32'), 0, h - 1) | |
ymax = np.clip(np.ceil(box[:, 1].max()).astype('int32'), 0, h - 1) | |
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8) | |
box[:, 0] = box[:, 0] - xmin | |
box[:, 1] = box[:, 1] - ymin | |
cv2.fillPoly(mask, box.reshape(1, -1, 2).astype('int32'), 1) | |
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0] | |
def box_score_slow(self, bitmap, contour): | |
""" | |
box_score_slow: use polyon mean score as the mean score | |
""" | |
h, w = bitmap.shape[:2] | |
contour = contour.copy() | |
contour = np.reshape(contour, (-1, 2)) | |
xmin = np.clip(np.min(contour[:, 0]), 0, w - 1) | |
xmax = np.clip(np.max(contour[:, 0]), 0, w - 1) | |
ymin = np.clip(np.min(contour[:, 1]), 0, h - 1) | |
ymax = np.clip(np.max(contour[:, 1]), 0, h - 1) | |
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8) | |
contour[:, 0] = contour[:, 0] - xmin | |
contour[:, 1] = contour[:, 1] - ymin | |
cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype('int32'), 1) | |
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0] | |
def __call__(self, outs_dict, shape_list, **kwargs): | |
self.thresh= kwargs.get('thresh', self.thresh) | |
self.box_thresh = kwargs.get('box_thresh', self.box_thresh) | |
self.unclip_ratio = kwargs.get('unclip_ratio', self.unclip_ratio) | |
self.box_type = kwargs.get('box_type', self.box_type) | |
self.score_mode = kwargs.get('score_mode', self.score_mode) | |
pred = outs_dict['maps'] | |
if isinstance(pred, torch.Tensor): | |
pred = pred.detach().cpu().numpy() | |
pred = pred[:, 0, :, :] | |
segmentation = pred > self.thresh | |
boxes_batch = [] | |
for batch_index in range(pred.shape[0]): | |
src_h, src_w, ratio_h, ratio_w = shape_list[batch_index] | |
if self.dilation_kernel is not None: | |
mask = cv2.dilate( | |
np.array(segmentation[batch_index]).astype(np.uint8), | |
self.dilation_kernel, | |
) | |
else: | |
mask = segmentation[batch_index] | |
if self.box_type == 'poly': | |
boxes, scores = self.polygons_from_bitmap( | |
pred[batch_index], mask, src_w, src_h) | |
elif self.box_type == 'quad': | |
boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask, | |
src_w, src_h) | |
else: | |
raise ValueError( | |
"box_type can only be one of ['quad', 'poly']") | |
boxes_batch.append({'points': boxes}) | |
return boxes_batch | |
class DistillationDBPostProcess(object): | |
def __init__( | |
self, | |
model_name=['student'], | |
key=None, | |
thresh=0.3, | |
box_thresh=0.6, | |
max_candidates=1000, | |
unclip_ratio=1.5, | |
use_dilation=False, | |
score_mode='fast', | |
box_type='quad', | |
**kwargs, | |
): | |
self.model_name = model_name | |
self.key = key | |
self.post_process = DBPostProcess( | |
thresh=thresh, | |
box_thresh=box_thresh, | |
max_candidates=max_candidates, | |
unclip_ratio=unclip_ratio, | |
use_dilation=use_dilation, | |
score_mode=score_mode, | |
box_type=box_type, | |
) | |
def __call__(self, predicts, shape_list): | |
results = {} | |
for k in self.model_name: | |
results[k] = self.post_process(predicts[k], shape_list=shape_list) | |
return results | |