topdu's picture
openocr demo
29f689c
raw
history blame
5.2 kB
import cv2
def padding_image(img, size=(640, 640)):
"""
Padding an image using OpenCV:
- If the image is smaller than the target size, pad it to 640x640.
- If the image is larger than the target size, split it into multiple 640x640 images and record positions.
:param image_path: Path to the input image.
:param output_dir: Directory to save the output images.
:param size: The target size for padding or splitting (default 640x640).
:return: List of tuples containing the coordinates of the top-left corner of each cropped 640x640 image.
"""
img_height, img_width = img.shape[:2]
target_width, target_height = size
# If image is smaller than target size, pad the image to 640x640
# Calculate padding amounts (top, bottom, left, right)
pad_top = 0
pad_bottom = target_height - img_height
pad_left = 0
pad_right = target_width - img_width
# Pad the image (white padding, border type: constant)
padded_img = cv2.copyMakeBorder(img,
pad_top,
pad_bottom,
pad_left,
pad_right,
cv2.BORDER_CONSTANT,
value=[0, 0, 0])
# Return the padded area positions (top-left and bottom-right coordinates of the original image)
return padded_img
class CropResize(object):
def __init__(self, size=(640, 640), interpolation=cv2.INTER_LINEAR):
self.size = size
self.interpolation = interpolation
def __call__(self, data):
"""
Resize an image using OpenCV:
- If the image is smaller than the target size, pad it to 640x640.
- If the image is larger than the target size, split it into multiple 640x640 images and record positions.
:param image_path: Path to the input image.
:param output_dir: Directory to save the output images.
:param size: The target size for padding or splitting (default 640x640).
:return: List of tuples containing the coordinates of the top-left corner of each cropped 640x640 image.
"""
img = data['image']
img_height, img_width = img.shape[:2]
target_width, target_height = self.size
# If image is smaller than target size, pad the image to 640x640
if img_width <= target_width and img_height <= target_height:
# Calculate padding amounts (top, bottom, left, right)
if img_width == target_width and img_height == target_height:
return [img], [[0, 0, img_width, img_height]]
padded_img = padding_image(img, self.size)
# Return the padded area positions (top-left and bottom-right coordinates of the original image)
return [padded_img], [[0, 0, img_width, img_height]]
if img_width < target_width:
img = cv2.copyMakeBorder(img,
0,
0,
0,
target_width - img_width,
cv2.BORDER_CONSTANT,
value=[0, 0, 0])
if img_height < target_height:
img = cv2.copyMakeBorder(img,
0,
target_height - img_height,
0,
0,
cv2.BORDER_CONSTANT,
value=[0, 0, 0])
# raise ValueError("Image dimensions must be greater than or equal to target size")
img_height, img_width = img.shape[:2]
# If image is larger than or equal to target size, crop it into 640x640 tiles
crop_positions = []
count = 0
cropped_img_list = []
for top in range(0, img_height - target_height // 2,
target_height // 2):
for left in range(0, img_width - target_height // 2,
target_width // 2):
# Calculate the bottom and right boundaries for the crop
right = min(left + target_width, img_width)
bottom = min(top + target_height, img_height)
if right > img_width:
right = img_width
left = max(0, right - target_width)
if bottom > img_height:
bottom = img_height
top = max(0, bottom - target_height)
# Crop the image
cropped_img = img[top:bottom, left:right]
if bottom - top < target_height or right - left < target_width:
cropped_img = padding_image(cropped_img, self.size)
count += 1
cropped_img_list.append(cropped_img)
# Record the position of the cropped image
crop_positions.append([left, top, right, bottom])
# print(f"Images cropped and saved at {output_dir}.")
return cropped_img_list, crop_positions