Spaces:
Running
Running
from torch import nn | |
class MGPLoss(nn.Module): | |
def __init__(self, only_char=False, **kwargs): | |
super(MGPLoss, self).__init__() | |
self.ce = nn.CrossEntropyLoss(reduction='mean', ignore_index=0) | |
self.only_char = only_char | |
def forward(self, pred, batch): | |
if self.only_char: | |
char_feats = pred | |
char_tgt = batch[1].flatten(0, 1) | |
char_loss = self.ce(char_feats.flatten(0, 1), char_tgt) | |
return {'loss': char_loss} | |
else: | |
return self.forward_all(pred, batch) | |
def forward_all(self, pred, batch): | |
char_feats, dpe_feats, wp_feats = pred | |
char_tgt = batch[1].flatten(0, 1) | |
dpe_tgt = batch[2].flatten(0, 1) | |
wp_tgt = batch[3].flatten(0, 1) | |
char_loss = self.ce(char_feats.flatten(0, 1), char_tgt) | |
dpe_loss = self.ce(dpe_feats.flatten(0, 1), dpe_tgt) | |
wp_loss = self.ce(wp_feats.flatten(0, 1), wp_tgt) | |
loss = char_loss + dpe_loss + wp_loss | |
return { | |
'loss': loss, | |
'char_loss': char_loss, | |
'dpe_loss': dpe_loss, | |
'wp_loss': wp_loss | |
} | |