topdu's picture
openocr demo
29f689c
raw
history blame
1.5 kB
import torch.nn.functional as F
from torch import nn
class SRNLoss(nn.Module):
def __init__(self, label_smoothing=0.0, **kwargs):
super(SRNLoss, self).__init__()
self.label_smoothing = label_smoothing
def forward(self, preds, batch):
pvam_preds, gsrm_preds, vsfd_preds = preds
label = batch[1].reshape([-1])
ignore_index = pvam_preds.shape[-1] + 1
loss_pvam = F.cross_entropy(pvam_preds,
label,
reduction='mean',
label_smoothing=self.label_smoothing,
ignore_index=ignore_index)
loss_gsrm = F.cross_entropy(gsrm_preds,
label,
reduction='mean',
label_smoothing=self.label_smoothing,
ignore_index=ignore_index)
loss_vsfd = F.cross_entropy(vsfd_preds,
label,
reduction='mean',
label_smoothing=self.label_smoothing,
ignore_index=ignore_index)
loss_dict = {}
loss_dict['loss_pvam'] = loss_pvam
loss_dict['loss_gsrm'] = loss_gsrm
loss_dict['loss_vsfd'] = loss_vsfd
loss_dict['loss'] = loss_pvam * 3.0 + loss_gsrm * 0.15 + loss_vsfd
return loss_dict