Spaces:
Running
Running
import torch.nn.functional as F | |
from torch import nn | |
class SRNLoss(nn.Module): | |
def __init__(self, label_smoothing=0.0, **kwargs): | |
super(SRNLoss, self).__init__() | |
self.label_smoothing = label_smoothing | |
def forward(self, preds, batch): | |
pvam_preds, gsrm_preds, vsfd_preds = preds | |
label = batch[1].reshape([-1]) | |
ignore_index = pvam_preds.shape[-1] + 1 | |
loss_pvam = F.cross_entropy(pvam_preds, | |
label, | |
reduction='mean', | |
label_smoothing=self.label_smoothing, | |
ignore_index=ignore_index) | |
loss_gsrm = F.cross_entropy(gsrm_preds, | |
label, | |
reduction='mean', | |
label_smoothing=self.label_smoothing, | |
ignore_index=ignore_index) | |
loss_vsfd = F.cross_entropy(vsfd_preds, | |
label, | |
reduction='mean', | |
label_smoothing=self.label_smoothing, | |
ignore_index=ignore_index) | |
loss_dict = {} | |
loss_dict['loss_pvam'] = loss_pvam | |
loss_dict['loss_gsrm'] = loss_gsrm | |
loss_dict['loss_vsfd'] = loss_vsfd | |
loss_dict['loss'] = loss_pvam * 3.0 + loss_gsrm * 0.15 + loss_vsfd | |
return loss_dict | |