topdu's picture
openocr demo
29f689c
raw
history blame
18.6 kB
import numpy as np
import torch
from torch import nn
from torch.nn.init import kaiming_normal_, ones_, trunc_normal_, zeros_
from openrec.modeling.common import DropPath, Identity, Mlp
class ConvBNLayer(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=0,
bias=False,
groups=1,
act=nn.GELU,
):
super().__init__()
self.conv = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
bias=bias,
)
self.norm = nn.BatchNorm2d(out_channels)
self.act = act()
def forward(self, inputs):
out = self.conv(inputs)
out = self.norm(out)
out = self.act(out)
return out
class ConvMixer(nn.Module):
def __init__(
self,
dim,
num_heads=8,
HW=[8, 25],
local_k=[3, 3],
):
super().__init__()
self.HW = HW
self.dim = dim
self.local_mixer = nn.Conv2d(dim,
dim,
local_k,
1, [local_k[0] // 2, local_k[1] // 2],
groups=num_heads)
def forward(self, x):
h = self.HW[0]
w = self.HW[1]
x = x.transpose(1, 2).reshape([x.shape[0], self.dim, h, w])
x = self.local_mixer(x)
x = x.flatten(2).transpose(1, 2)
return x
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
mixer='Global',
HW=None,
local_k=[7, 11],
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
):
super().__init__()
self.num_heads = num_heads
self.dim = dim
self.head_dim = dim // num_heads
self.scale = qk_scale or self.head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.HW = HW
if HW is not None:
H = HW[0]
W = HW[1]
self.N = H * W
self.C = dim
if mixer == 'Local' and HW is not None:
hk = local_k[0]
wk = local_k[1]
mask = torch.ones(H * W,
H + hk - 1,
W + wk - 1,
dtype=torch.float32,
requires_grad=False)
for h in range(0, H):
for w in range(0, W):
mask[h * W + w, h:h + hk, w:w + wk] = 0.0
mask = mask[:, hk // 2:H + hk // 2, wk // 2:W + wk // 2].flatten(1)
mask[mask >= 1] = -np.inf
self.register_buffer('mask', mask[None, None, :, :])
self.mixer = mixer
def forward(self, x):
B, N, _ = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads,
self.head_dim).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
# x = F.scaled_dot_product_attention(
# q, k, v,
# attn_mask=mask,
# dropout_p=self.attn_drop.p
# )
q = q * self.scale
attn = q @ k.transpose(-2, -1)
if self.mixer == 'Local':
attn += self.mask
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ v
x = x.transpose(1, 2).reshape(B, N, self.dim)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
mixer='Global',
local_mixer=[7, 11],
HW=None,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer='nn.LayerNorm',
eps=1e-6,
prenorm=True,
):
super().__init__()
if isinstance(norm_layer, str):
self.norm1 = eval(norm_layer)(dim, eps=eps)
else:
self.norm1 = norm_layer(dim)
if mixer == 'Global' or mixer == 'Local':
self.mixer = Attention(
dim,
num_heads=num_heads,
mixer=mixer,
HW=HW,
local_k=local_mixer,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
)
elif mixer == 'Conv':
self.mixer = ConvMixer(dim,
num_heads=num_heads,
HW=HW,
local_k=local_mixer)
else:
raise TypeError('The mixer must be one of [Global, Local, Conv]')
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else Identity()
if isinstance(norm_layer, str):
self.norm2 = eval(norm_layer)(dim, eps=eps)
else:
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp_ratio = mlp_ratio
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
self.prenorm = prenorm
def forward(self, x):
if self.prenorm:
x = self.norm1(x + self.drop_path(self.mixer(x)))
x = self.norm2(x + self.drop_path(self.mlp(x)))
else:
x = x + self.drop_path(self.mixer(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class PatchEmbed(nn.Module):
"""Image to Patch Embedding."""
def __init__(
self,
img_size=[32, 100],
in_channels=3,
embed_dim=768,
sub_num=2,
patch_size=[4, 4],
mode='pope',
):
super().__init__()
num_patches = (img_size[1] // (2**sub_num)) * (img_size[0] //
(2**sub_num))
self.img_size = img_size
self.num_patches = num_patches
self.embed_dim = embed_dim
self.norm = None
if mode == 'pope':
if sub_num == 2:
self.proj = nn.Sequential(
ConvBNLayer(
in_channels=in_channels,
out_channels=embed_dim // 2,
kernel_size=3,
stride=2,
padding=1,
act=nn.GELU,
bias=None,
),
ConvBNLayer(
in_channels=embed_dim // 2,
out_channels=embed_dim,
kernel_size=3,
stride=2,
padding=1,
act=nn.GELU,
bias=None,
),
)
if sub_num == 3:
self.proj = nn.Sequential(
ConvBNLayer(
in_channels=in_channels,
out_channels=embed_dim // 4,
kernel_size=3,
stride=2,
padding=1,
act=nn.GELU,
bias=None,
),
ConvBNLayer(
in_channels=embed_dim // 4,
out_channels=embed_dim // 2,
kernel_size=3,
stride=2,
padding=1,
act=nn.GELU,
bias=None,
),
ConvBNLayer(
in_channels=embed_dim // 2,
out_channels=embed_dim,
kernel_size=3,
stride=2,
padding=1,
act=nn.GELU,
bias=None,
),
)
elif mode == 'linear':
self.proj = nn.Conv2d(1,
embed_dim,
kernel_size=patch_size,
stride=patch_size)
self.num_patches = img_size[0] // patch_size[0] * img_size[
1] // patch_size[1]
def forward(self, x):
B, C, H, W = x.shape
assert (
H == self.img_size[0] and W == self.img_size[1]
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x).flatten(2).transpose(1, 2)
return x
class SubSample(nn.Module):
def __init__(
self,
in_channels,
out_channels,
types='Pool',
stride=[2, 1],
sub_norm='nn.LayerNorm',
act=None,
):
super().__init__()
self.types = types
if types == 'Pool':
self.avgpool = nn.AvgPool2d(kernel_size=[3, 5],
stride=stride,
padding=[1, 2])
self.maxpool = nn.MaxPool2d(kernel_size=[3, 5],
stride=stride,
padding=[1, 2])
self.proj = nn.Linear(in_channels, out_channels)
else:
self.conv = nn.Conv2d(in_channels,
out_channels,
kernel_size=3,
stride=stride,
padding=1)
self.norm = eval(sub_norm)(out_channels)
if act is not None:
self.act = act()
else:
self.act = None
def forward(self, x):
if self.types == 'Pool':
x1 = self.avgpool(x)
x2 = self.maxpool(x)
x = (x1 + x2) * 0.5
out = self.proj(x.flatten(2).transpose(1, 2))
else:
x = self.conv(x)
out = x.flatten(2).transpose(1, 2)
out = self.norm(out)
if self.act is not None:
out = self.act(out)
return out
class SVTRNet(nn.Module):
def __init__(
self,
img_size=[32, 100],
in_channels=3,
embed_dim=[64, 128, 256],
depth=[3, 6, 3],
num_heads=[2, 4, 8],
mixer=['Local'] * 6 +
['Global'] * 6, # Local atten, Global atten, Conv
local_mixer=[[7, 11], [7, 11], [7, 11]],
patch_merging='Conv', # Conv, Pool, None
sub_k=[[2, 1], [2, 1]],
mlp_ratio=4,
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
last_drop=0.1,
attn_drop_rate=0.0,
drop_path_rate=0.1,
norm_layer='nn.LayerNorm',
sub_norm='nn.LayerNorm',
eps=1e-6,
out_channels=192,
out_char_num=25,
block_unit='Block',
act='nn.GELU',
last_stage=True,
sub_num=2,
prenorm=True,
use_lenhead=False,
feature2d=False,
**kwargs,
):
super().__init__()
self.img_size = img_size
self.embed_dim = embed_dim
self.out_channels = out_channels
self.prenorm = prenorm
self.feature2d = feature2d
patch_merging = None if patch_merging != 'Conv' and patch_merging != 'Pool' else patch_merging
self.patch_embed = PatchEmbed(
img_size=img_size,
in_channels=in_channels,
embed_dim=embed_dim[0],
sub_num=sub_num,
)
num_patches = self.patch_embed.num_patches
self.HW = [img_size[0] // (2**sub_num), img_size[1] // (2**sub_num)]
self.hw = [
[self.HW[0] // sub_k[0][0], self.HW[1] // sub_k[0][1]],
[
self.HW[0] // (sub_k[0][0] * sub_k[1][0]),
self.HW[1] // (sub_k[0][1] * sub_k[1][1])
],
]
# self.pos_embed = self.create_parameter(
# shape=[1, num_patches, embed_dim[0]], default_initializer=zeros_)
# self.add_parameter("pos_embed", self.pos_embed)
self.pos_embed = nn.Parameter(
torch.zeros([1, num_patches, embed_dim[0]], dtype=torch.float32),
requires_grad=True,
)
self.pos_drop = nn.Dropout(p=drop_rate)
Block_unit = eval(block_unit)
dpr = np.linspace(0, drop_path_rate, sum(depth))
self.blocks1 = nn.ModuleList([
Block_unit(
dim=embed_dim[0],
num_heads=num_heads[0],
mixer=mixer[0:depth[0]][i],
HW=self.HW,
local_mixer=local_mixer[0],
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
act_layer=eval(act),
attn_drop=attn_drop_rate,
drop_path=dpr[0:depth[0]][i],
norm_layer=norm_layer,
eps=eps,
prenorm=prenorm,
) for i in range(depth[0])
])
if patch_merging is not None:
self.sub_sample1 = SubSample(
embed_dim[0],
embed_dim[1],
sub_norm=sub_norm,
stride=sub_k[0],
types=patch_merging,
)
HW = self.hw[0]
else:
HW = self.HW
self.patch_merging = patch_merging
self.blocks2 = nn.ModuleList([
Block_unit(
dim=embed_dim[1],
num_heads=num_heads[1],
mixer=mixer[depth[0]:depth[0] + depth[1]][i],
HW=HW,
local_mixer=local_mixer[1],
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
act_layer=eval(act),
attn_drop=attn_drop_rate,
drop_path=dpr[depth[0]:depth[0] + depth[1]][i],
norm_layer=norm_layer,
eps=eps,
prenorm=prenorm,
) for i in range(depth[1])
])
if patch_merging is not None:
self.sub_sample2 = SubSample(
embed_dim[1],
embed_dim[2],
sub_norm=sub_norm,
stride=sub_k[1],
types=patch_merging,
)
HW = self.hw[1]
self.blocks3 = nn.ModuleList([
Block_unit(
dim=embed_dim[2],
num_heads=num_heads[2],
mixer=mixer[depth[0] + depth[1]:][i],
HW=HW,
local_mixer=local_mixer[2],
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
act_layer=eval(act),
attn_drop=attn_drop_rate,
drop_path=dpr[depth[0] + depth[1]:][i],
norm_layer=norm_layer,
eps=eps,
prenorm=prenorm,
) for i in range(depth[2])
])
self.last_stage = last_stage
if last_stage:
self.avg_pool = nn.AdaptiveAvgPool2d([1, out_char_num])
self.last_conv = nn.Conv2d(
in_channels=embed_dim[2],
out_channels=self.out_channels,
kernel_size=1,
stride=1,
padding=0,
bias=False,
)
self.hardswish = nn.Hardswish()
self.dropout = nn.Dropout(p=last_drop)
else:
self.out_channels = embed_dim[2]
if not prenorm:
self.norm = eval(norm_layer)(embed_dim[-1], eps=eps)
self.use_lenhead = use_lenhead
if use_lenhead:
self.len_conv = nn.Linear(embed_dim[2], self.out_channels)
self.hardswish_len = nn.Hardswish()
self.dropout_len = nn.Dropout(p=last_drop)
trunc_normal_(self.pos_embed, mean=0, std=0.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, mean=0, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
zeros_(m.bias)
if isinstance(m, nn.LayerNorm):
zeros_(m.bias)
ones_(m.weight)
if isinstance(m, nn.Conv2d):
kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'sub_sample1', 'sub_sample2', 'sub_sample3'}
def forward_features(self, x):
x = self.patch_embed(x)
x = x + self.pos_embed
x = self.pos_drop(x)
for blk in self.blocks1:
x = blk(x)
if self.patch_merging is not None:
x = self.sub_sample1(
x.transpose(1, 2).reshape(-1, self.embed_dim[0], self.HW[0],
self.HW[1]))
for blk in self.blocks2:
x = blk(x)
if self.patch_merging is not None:
x = self.sub_sample2(
x.transpose(1, 2).reshape(-1, self.embed_dim[1], self.hw[0][0],
self.hw[0][1]))
for blk in self.blocks3:
x = blk(x)
if not self.prenorm:
x = self.norm(x)
return x
def forward(self, x):
x = self.forward_features(x)
if self.feature2d:
x = x.transpose(1, 2).reshape(-1, self.embed_dim[2], self.hw[1][0],
self.hw[1][1])
if self.use_lenhead:
len_x = self.len_conv(x.mean(1))
len_x = self.dropout_len(self.hardswish_len(len_x))
if self.last_stage:
x = self.avg_pool(
x.transpose(1, 2).reshape(-1, self.embed_dim[2], self.hw[1][0],
self.hw[1][1]))
x = self.last_conv(x)
x = self.hardswish(x)
x = self.dropout(x)
x = x.flatten(2).transpose(1, 2)
if self.use_lenhead:
return x, len_x
return x