topdu's picture
openocr demo
29f689c
raw
history blame
19.2 kB
import numpy as np
import torch
from torch import nn
from torch.nn.init import kaiming_normal_, ones_, trunc_normal_, zeros_
from openrec.modeling.common import DropPath, Identity, Mlp
class ConvBNLayer(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=0,
bias=False,
groups=1,
act=nn.GELU,
):
super().__init__()
self.conv = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
bias=bias,
)
self.norm = nn.BatchNorm2d(out_channels)
self.act = act()
def forward(self, inputs):
out = self.conv(inputs)
out = self.norm(out)
out = self.act(out)
return out
class ConvMixer(nn.Module):
def __init__(
self,
dim,
num_heads=8,
HW=[8, 25],
local_k=[3, 3],
):
super().__init__()
self.HW = HW
self.dim = dim
self.local_mixer = nn.Conv2d(dim,
dim,
local_k,
1, [local_k[0] // 2, local_k[1] // 2],
groups=num_heads)
def forward(self, x, w):
x = x.transpose(1, 2).reshape([x.shape[0], self.dim, -1, w])
x = self.local_mixer(x)
x = x.flatten(2).transpose(1, 2)
return x
class ConvMlp(nn.Module):
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.0,
groups=1,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Conv2d(in_features, hidden_features, 1, groups=groups)
self.act = act_layer()
self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class ConvBlock(nn.Module):
def __init__(
self,
dim,
num_heads,
mixer='Global',
local_mixer=[7, 11],
HW=None,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer='nn.LayerNorm',
eps=1e-6,
prenorm=True,
):
super().__init__()
self.norm1 = nn.BatchNorm2d(dim)
self.local_mixer = nn.Conv2d(dim,
dim, [5, 5],
1, [2, 2],
groups=num_heads)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else Identity()
self.norm2 = nn.BatchNorm2d(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = ConvMlp(in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop)
self.prenorm = prenorm
def forward(self, x):
x = self.norm1(x + self.drop_path(self.local_mixer(x)))
x = self.norm2(x + self.drop_path(self.mlp(x)))
return x
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
mixer='Global',
HW=None,
local_k=[7, 11],
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
):
super().__init__()
self.num_heads = num_heads
self.dim = dim
self.head_dim = dim // num_heads
self.scale = qk_scale or self.head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.HW = HW
if HW is not None:
H = HW[0]
W = HW[1]
if W == -1:
W = 300
self.C = dim
self.H = H
self.W = W
if mixer == 'Local' and HW is not None:
if HW[1] == -1:
wk = 29
else:
wk = local_k[1]
self.wk = wk
mask = torch.ones(W, W, dtype=torch.float32, requires_grad=False)
for w in range(0, W):
b_w = w - wk // 2 if w - wk // 2 > 0 else 0
if b_w > W - wk:
b_w = W - wk
mask[w, b_w:b_w + wk] = 0.0
mask[mask >= 1] = -np.inf
self.register_buffer('mask', mask)
self.mixer = mixer
def forward(self, x, w):
B, N, _ = x.shape
h = N // w
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads,
self.head_dim).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
q = q * self.scale
attn = q @ k.transpose(-2, -1)
if self.mixer == 'Local' and w >= 32:
mask1 = self.mask[(self.W - w) // 2:-(self.W - w) // 2,
(self.W - w) // 2:-(self.W - w) // 2]
mask1[:(self.wk // 2 + 1)] = self.mask[:(self.wk // 2 + 1), :w]
mask1[-(self.wk // 2 + 1):] = self.mask[-(self.wk // 2 + 1):, -w:]
attn += mask1[None, None, :, :].tile(B, 1, h, h)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ v
x = x.transpose(1, 2).reshape(B, N, self.dim)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
mixer='Global',
local_mixer=[7, 11],
HW=None,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer='nn.LayerNorm',
eps=1e-6,
):
super().__init__()
if isinstance(norm_layer, str):
self.norm1 = eval(norm_layer)(dim, eps=eps)
else:
self.norm1 = norm_layer(dim)
if mixer == 'Global' or mixer == 'Local':
self.mixer = Attention(
dim,
num_heads=num_heads,
mixer=mixer,
HW=HW,
local_k=local_mixer,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
)
elif mixer == 'Conv':
self.mixer = ConvMixer(dim,
num_heads=num_heads,
HW=HW,
local_k=local_mixer)
else:
raise TypeError('The mixer must be one of [Global, Local, Conv]')
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else Identity()
if isinstance(norm_layer, str):
self.norm2 = eval(norm_layer)(dim, eps=eps)
else:
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp_ratio = mlp_ratio
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
def forward(self, x, w):
x = self.norm1(x + self.drop_path(self.mixer(x, w)))
x = self.norm2(x + self.drop_path(self.mlp(x)))
return x, w
class PatchEmbed(nn.Module):
"""Image to Patch Embedding."""
def __init__(
self,
img_size=[32, 100],
in_channels=3,
embed_dim=768,
sub_num=2,
patch_size=[4, 4],
mode='pope',
):
super().__init__()
num_patches = (img_size[1] // (2**sub_num)) * (img_size[0] //
(2**sub_num))
self.img_size = img_size
self.num_patches = num_patches
self.embed_dim = embed_dim
self.norm = None
if mode == 'pope':
if sub_num == 2:
self.proj = nn.Sequential(
ConvBNLayer(
in_channels=in_channels,
out_channels=embed_dim // 2,
kernel_size=3,
stride=2,
padding=1,
act=nn.GELU,
bias=None,
),
ConvBNLayer(
in_channels=embed_dim // 2,
out_channels=embed_dim,
kernel_size=3,
stride=2,
padding=1,
act=nn.GELU,
bias=None,
),
)
if sub_num == 3:
self.proj = nn.Sequential(
ConvBNLayer(
in_channels=in_channels,
out_channels=embed_dim // 4,
kernel_size=3,
stride=2,
padding=1,
act=nn.GELU,
bias=None,
),
ConvBNLayer(
in_channels=embed_dim // 4,
out_channels=embed_dim // 2,
kernel_size=3,
stride=2,
padding=1,
act=nn.GELU,
bias=None,
),
ConvBNLayer(
in_channels=embed_dim // 2,
out_channels=embed_dim,
kernel_size=3,
stride=2,
padding=1,
act=nn.GELU,
bias=None,
),
)
elif mode == 'linear':
self.proj = nn.Conv2d(1,
embed_dim,
kernel_size=patch_size,
stride=patch_size)
self.num_patches = img_size[0] // patch_size[0] * img_size[
1] // patch_size[1]
def forward(self, x):
x = self.proj(x)
return x
class SubSample(nn.Module):
def __init__(
self,
in_channels,
out_channels,
types='Pool',
stride=[2, 1],
sub_norm='nn.LayerNorm',
act=None,
):
super().__init__()
self.types = types
if types == 'Pool':
self.avgpool = nn.AvgPool2d(kernel_size=[3, 5],
stride=stride,
padding=[1, 2])
self.maxpool = nn.MaxPool2d(kernel_size=[3, 5],
stride=stride,
padding=[1, 2])
self.proj = nn.Linear(in_channels, out_channels)
else:
self.conv = nn.Conv2d(in_channels,
out_channels,
kernel_size=3,
stride=stride,
padding=1)
self.dim = in_channels
self.norm = eval(sub_norm)(out_channels)
if act is not None:
self.act = act()
else:
self.act = None
def forward(self, x, w):
if self.types == 'Pool':
x1 = self.avgpool(x)
x2 = self.maxpool(x)
x = (x1 + x2) * 0.5
out = self.proj(x.flatten(2).transpose(1, 2))
else:
x = x.transpose(1, 2).reshape([x.shape[0], self.dim, -1, w])
x = self.conv(x)
out = x.flatten(2).transpose(1, 2)
out = self.norm(out)
if self.act is not None:
out = self.act(out)
return out, w
class FlattenTranspose(nn.Module):
def forward(self, x):
return x.flatten(2).transpose(1, 2)
class DownSConv(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv = nn.Conv2d(in_channels,
out_channels,
3,
stride=[2, 1],
padding=1)
self.norm = nn.LayerNorm(out_channels)
def forward(self, x, w):
B, N, C = x.shape
x = x.transpose(1, 2).reshape(B, C, -1, w)
x = self.conv(x)
w = x.shape[-1]
x = self.norm(x.flatten(2).transpose(1, 2))
return x, w
class SVTRNet2DPos(nn.Module):
def __init__(
self,
img_size=[32, -1],
in_channels=3,
embed_dim=[64, 128, 256],
depth=[3, 6, 3],
num_heads=[2, 4, 8],
mixer=['Local'] * 6 +
['Global'] * 6, # Local atten, Global atten, Conv
local_mixer=[[7, 11], [7, 11], [7, 11]],
patch_merging='Conv', # Conv, Pool, None
pool_size=[2, 1],
max_size=[16, 32],
mlp_ratio=4,
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
last_drop=0.1,
attn_drop_rate=0.0,
drop_path_rate=0.1,
norm_layer='nn.LayerNorm',
eps=1e-6,
act='nn.GELU',
last_stage=True,
sub_num=2,
use_first_sub=True,
flatten=False,
**kwargs,
):
super().__init__()
self.img_size = img_size
self.embed_dim = embed_dim
self.flatten = flatten
patch_merging = None if patch_merging != 'Conv' and patch_merging != 'Pool' else patch_merging
self.patch_embed = PatchEmbed(
img_size=img_size,
in_channels=in_channels,
embed_dim=embed_dim[0],
sub_num=sub_num,
)
if img_size[1] == -1:
self.HW = [img_size[0] // (2**sub_num), -1]
else:
self.HW = [
img_size[0] // (2**sub_num), img_size[1] // (2**sub_num)
]
pos_embed = torch.zeros([1, max_size[0] * max_size[1], embed_dim[0]],
dtype=torch.float32)
trunc_normal_(pos_embed, mean=0, std=0.02)
self.pos_embed = nn.Parameter(
pos_embed.transpose(1, 2).reshape(1, embed_dim[0], max_size[0],
max_size[1]),
requires_grad=True,
)
self.pos_drop = nn.Dropout(p=drop_rate)
conv_block_num = sum(
[1 if mixer_type == 'ConvB' else 0 for mixer_type in mixer])
Block_unit = [ConvBlock for _ in range(conv_block_num)
] + [Block for _ in range(len(mixer) - conv_block_num)]
HW = self.HW
dpr = np.linspace(0, drop_path_rate, sum(depth))
self.conv_blocks1 = nn.ModuleList([
Block_unit[0:depth[0]][i](
dim=embed_dim[0],
num_heads=num_heads[0],
mixer=mixer[0:depth[0]][i],
HW=self.HW,
local_mixer=local_mixer[0],
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
act_layer=eval(act),
attn_drop=attn_drop_rate,
drop_path=dpr[0:depth[0]][i],
norm_layer=norm_layer,
eps=eps,
) for i in range(depth[0])
])
if patch_merging is not None:
if use_first_sub:
stride = [2, 1]
HW = [self.HW[0] // 2, self.HW[1]]
else:
stride = [1, 1]
HW = self.HW
sub_sample1 = nn.Sequential(
nn.Conv2d(embed_dim[0],
embed_dim[1],
3,
stride=stride,
padding=1),
nn.BatchNorm2d(embed_dim[1]),
)
self.conv_blocks1.append(sub_sample1)
self.patch_merging = patch_merging
self.trans_blocks = nn.ModuleList()
for i in range(depth[1]):
block = Block_unit[depth[0]:depth[0] + depth[1]][i](
dim=embed_dim[1],
num_heads=num_heads[1],
mixer=mixer[depth[0]:depth[0] + depth[1]][i],
HW=HW,
local_mixer=local_mixer[1],
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
act_layer=eval(act),
attn_drop=attn_drop_rate,
drop_path=dpr[depth[0]:depth[0] + depth[1]][i],
norm_layer=norm_layer,
eps=eps,
)
if i + depth[0] < conv_block_num:
self.conv_blocks1.append(block)
else:
self.trans_blocks.append(block)
if patch_merging is not None:
self.trans_blocks.append(DownSConv(embed_dim[1], embed_dim[2]))
HW = [HW[0] // 2, -1]
for i in range(depth[2]):
self.trans_blocks.append(Block_unit[depth[0] + depth[1]:][i](
dim=embed_dim[2],
num_heads=num_heads[2],
mixer=mixer[depth[0] + depth[1]:][i],
HW=HW,
local_mixer=local_mixer[2],
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
act_layer=eval(act),
attn_drop=attn_drop_rate,
drop_path=dpr[depth[0] + depth[1]:][i],
norm_layer=norm_layer,
eps=eps,
))
self.last_stage = last_stage
self.out_channels = embed_dim[-1]
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, mean=0, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
zeros_(m.bias)
if isinstance(m, nn.LayerNorm):
zeros_(m.bias)
ones_(m.weight)
if isinstance(m, nn.Conv2d):
kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'sub_sample1', 'sub_sample2'}
def forward(self, x):
x = self.patch_embed(x)
w = x.shape[-1]
x = x + self.pos_embed[:, :, :x.shape[-2], :w]
for blk in self.conv_blocks1:
x = blk(x)
x = x.flatten(2).transpose(1, 2)
for blk in self.trans_blocks:
x, w = blk(x, w)
B, N, C = x.shape
if not self.flatten:
x = x.transpose(1, 2).reshape(B, C, -1, w)
return x