Spaces:
Running
Running
import numpy as np | |
import torch | |
from torch import nn | |
from torch.nn.init import kaiming_normal_, ones_, trunc_normal_, zeros_ | |
from openrec.modeling.common import DropPath, Identity, Mlp | |
class ConvBNLayer(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=0, | |
bias=False, | |
groups=1, | |
act=nn.GELU, | |
): | |
super().__init__() | |
self.conv = nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
groups=groups, | |
bias=bias, | |
) | |
self.norm = nn.BatchNorm2d(out_channels) | |
self.act = act() | |
def forward(self, inputs): | |
out = self.conv(inputs) | |
out = self.norm(out) | |
out = self.act(out) | |
return out | |
class ConvMixer(nn.Module): | |
def __init__( | |
self, | |
dim, | |
num_heads=8, | |
HW=[8, 25], | |
local_k=[3, 3], | |
): | |
super().__init__() | |
self.HW = HW | |
self.dim = dim | |
self.local_mixer = nn.Conv2d(dim, | |
dim, | |
local_k, | |
1, [local_k[0] // 2, local_k[1] // 2], | |
groups=num_heads) | |
def forward(self, x, w): | |
x = x.transpose(1, 2).reshape([x.shape[0], self.dim, -1, w]) | |
x = self.local_mixer(x) | |
x = x.flatten(2).transpose(1, 2) | |
return x | |
class ConvMlp(nn.Module): | |
def __init__( | |
self, | |
in_features, | |
hidden_features=None, | |
out_features=None, | |
act_layer=nn.GELU, | |
drop=0.0, | |
groups=1, | |
): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Conv2d(in_features, hidden_features, 1, groups=groups) | |
self.act = act_layer() | |
self.fc2 = nn.Conv2d(hidden_features, out_features, 1) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class ConvBlock(nn.Module): | |
def __init__( | |
self, | |
dim, | |
num_heads, | |
mixer='Global', | |
local_mixer=[7, 11], | |
HW=None, | |
mlp_ratio=4.0, | |
qkv_bias=False, | |
qk_scale=None, | |
drop=0.0, | |
attn_drop=0.0, | |
drop_path=0.0, | |
act_layer=nn.GELU, | |
norm_layer='nn.LayerNorm', | |
eps=1e-6, | |
prenorm=True, | |
): | |
super().__init__() | |
self.norm1 = nn.BatchNorm2d(dim) | |
self.local_mixer = nn.Conv2d(dim, | |
dim, [5, 5], | |
1, [2, 2], | |
groups=num_heads) | |
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else Identity() | |
self.norm2 = nn.BatchNorm2d(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = ConvMlp(in_features=dim, | |
hidden_features=mlp_hidden_dim, | |
act_layer=act_layer, | |
drop=drop) | |
self.prenorm = prenorm | |
def forward(self, x): | |
x = self.norm1(x + self.drop_path(self.local_mixer(x))) | |
x = self.norm2(x + self.drop_path(self.mlp(x))) | |
return x | |
class Attention(nn.Module): | |
def __init__( | |
self, | |
dim, | |
num_heads=8, | |
mixer='Global', | |
HW=None, | |
local_k=[7, 11], | |
qkv_bias=False, | |
qk_scale=None, | |
attn_drop=0.0, | |
proj_drop=0.0, | |
): | |
super().__init__() | |
self.num_heads = num_heads | |
self.dim = dim | |
self.head_dim = dim // num_heads | |
self.scale = qk_scale or self.head_dim**-0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.HW = HW | |
if HW is not None: | |
H = HW[0] | |
W = HW[1] | |
if W == -1: | |
W = 300 | |
self.C = dim | |
self.H = H | |
self.W = W | |
if mixer == 'Local' and HW is not None: | |
if HW[1] == -1: | |
wk = 29 | |
else: | |
wk = local_k[1] | |
self.wk = wk | |
mask = torch.ones(W, W, dtype=torch.float32, requires_grad=False) | |
for w in range(0, W): | |
b_w = w - wk // 2 if w - wk // 2 > 0 else 0 | |
if b_w > W - wk: | |
b_w = W - wk | |
mask[w, b_w:b_w + wk] = 0.0 | |
mask[mask >= 1] = -np.inf | |
self.register_buffer('mask', mask) | |
self.mixer = mixer | |
def forward(self, x, w): | |
B, N, _ = x.shape | |
h = N // w | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, | |
self.head_dim).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv.unbind(0) | |
q = q * self.scale | |
attn = q @ k.transpose(-2, -1) | |
if self.mixer == 'Local' and w >= 32: | |
mask1 = self.mask[(self.W - w) // 2:-(self.W - w) // 2, | |
(self.W - w) // 2:-(self.W - w) // 2] | |
mask1[:(self.wk // 2 + 1)] = self.mask[:(self.wk // 2 + 1), :w] | |
mask1[-(self.wk // 2 + 1):] = self.mask[-(self.wk // 2 + 1):, -w:] | |
attn += mask1[None, None, :, :].tile(B, 1, h, h) | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = attn @ v | |
x = x.transpose(1, 2).reshape(B, N, self.dim) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Module): | |
def __init__( | |
self, | |
dim, | |
num_heads, | |
mixer='Global', | |
local_mixer=[7, 11], | |
HW=None, | |
mlp_ratio=4.0, | |
qkv_bias=False, | |
qk_scale=None, | |
drop=0.0, | |
attn_drop=0.0, | |
drop_path=0.0, | |
act_layer=nn.GELU, | |
norm_layer='nn.LayerNorm', | |
eps=1e-6, | |
): | |
super().__init__() | |
if isinstance(norm_layer, str): | |
self.norm1 = eval(norm_layer)(dim, eps=eps) | |
else: | |
self.norm1 = norm_layer(dim) | |
if mixer == 'Global' or mixer == 'Local': | |
self.mixer = Attention( | |
dim, | |
num_heads=num_heads, | |
mixer=mixer, | |
HW=HW, | |
local_k=local_mixer, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
attn_drop=attn_drop, | |
proj_drop=drop, | |
) | |
elif mixer == 'Conv': | |
self.mixer = ConvMixer(dim, | |
num_heads=num_heads, | |
HW=HW, | |
local_k=local_mixer) | |
else: | |
raise TypeError('The mixer must be one of [Global, Local, Conv]') | |
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else Identity() | |
if isinstance(norm_layer, str): | |
self.norm2 = eval(norm_layer)(dim, eps=eps) | |
else: | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp_ratio = mlp_ratio | |
self.mlp = Mlp( | |
in_features=dim, | |
hidden_features=mlp_hidden_dim, | |
act_layer=act_layer, | |
drop=drop, | |
) | |
def forward(self, x, w): | |
x = self.norm1(x + self.drop_path(self.mixer(x, w))) | |
x = self.norm2(x + self.drop_path(self.mlp(x))) | |
return x, w | |
class PatchEmbed(nn.Module): | |
"""Image to Patch Embedding.""" | |
def __init__( | |
self, | |
img_size=[32, 100], | |
in_channels=3, | |
embed_dim=768, | |
sub_num=2, | |
patch_size=[4, 4], | |
mode='pope', | |
): | |
super().__init__() | |
num_patches = (img_size[1] // (2**sub_num)) * (img_size[0] // | |
(2**sub_num)) | |
self.img_size = img_size | |
self.num_patches = num_patches | |
self.embed_dim = embed_dim | |
self.norm = None | |
if mode == 'pope': | |
if sub_num == 2: | |
self.proj = nn.Sequential( | |
ConvBNLayer( | |
in_channels=in_channels, | |
out_channels=embed_dim // 2, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
act=nn.GELU, | |
bias=None, | |
), | |
ConvBNLayer( | |
in_channels=embed_dim // 2, | |
out_channels=embed_dim, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
act=nn.GELU, | |
bias=None, | |
), | |
) | |
if sub_num == 3: | |
self.proj = nn.Sequential( | |
ConvBNLayer( | |
in_channels=in_channels, | |
out_channels=embed_dim // 4, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
act=nn.GELU, | |
bias=None, | |
), | |
ConvBNLayer( | |
in_channels=embed_dim // 4, | |
out_channels=embed_dim // 2, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
act=nn.GELU, | |
bias=None, | |
), | |
ConvBNLayer( | |
in_channels=embed_dim // 2, | |
out_channels=embed_dim, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
act=nn.GELU, | |
bias=None, | |
), | |
) | |
elif mode == 'linear': | |
self.proj = nn.Conv2d(1, | |
embed_dim, | |
kernel_size=patch_size, | |
stride=patch_size) | |
self.num_patches = img_size[0] // patch_size[0] * img_size[ | |
1] // patch_size[1] | |
def forward(self, x): | |
x = self.proj(x) | |
return x | |
class SubSample(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
types='Pool', | |
stride=[2, 1], | |
sub_norm='nn.LayerNorm', | |
act=None, | |
): | |
super().__init__() | |
self.types = types | |
if types == 'Pool': | |
self.avgpool = nn.AvgPool2d(kernel_size=[3, 5], | |
stride=stride, | |
padding=[1, 2]) | |
self.maxpool = nn.MaxPool2d(kernel_size=[3, 5], | |
stride=stride, | |
padding=[1, 2]) | |
self.proj = nn.Linear(in_channels, out_channels) | |
else: | |
self.conv = nn.Conv2d(in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=stride, | |
padding=1) | |
self.dim = in_channels | |
self.norm = eval(sub_norm)(out_channels) | |
if act is not None: | |
self.act = act() | |
else: | |
self.act = None | |
def forward(self, x, w): | |
if self.types == 'Pool': | |
x1 = self.avgpool(x) | |
x2 = self.maxpool(x) | |
x = (x1 + x2) * 0.5 | |
out = self.proj(x.flatten(2).transpose(1, 2)) | |
else: | |
x = x.transpose(1, 2).reshape([x.shape[0], self.dim, -1, w]) | |
x = self.conv(x) | |
out = x.flatten(2).transpose(1, 2) | |
out = self.norm(out) | |
if self.act is not None: | |
out = self.act(out) | |
return out, w | |
class FlattenTranspose(nn.Module): | |
def forward(self, x): | |
return x.flatten(2).transpose(1, 2) | |
class DownSConv(nn.Module): | |
def __init__(self, in_channels, out_channels): | |
super().__init__() | |
self.conv = nn.Conv2d(in_channels, | |
out_channels, | |
3, | |
stride=[2, 1], | |
padding=1) | |
self.norm = nn.LayerNorm(out_channels) | |
def forward(self, x, w): | |
B, N, C = x.shape | |
x = x.transpose(1, 2).reshape(B, C, -1, w) | |
x = self.conv(x) | |
w = x.shape[-1] | |
x = self.norm(x.flatten(2).transpose(1, 2)) | |
return x, w | |
class SVTRNet2DPos(nn.Module): | |
def __init__( | |
self, | |
img_size=[32, -1], | |
in_channels=3, | |
embed_dim=[64, 128, 256], | |
depth=[3, 6, 3], | |
num_heads=[2, 4, 8], | |
mixer=['Local'] * 6 + | |
['Global'] * 6, # Local atten, Global atten, Conv | |
local_mixer=[[7, 11], [7, 11], [7, 11]], | |
patch_merging='Conv', # Conv, Pool, None | |
pool_size=[2, 1], | |
max_size=[16, 32], | |
mlp_ratio=4, | |
qkv_bias=True, | |
qk_scale=None, | |
drop_rate=0.0, | |
last_drop=0.1, | |
attn_drop_rate=0.0, | |
drop_path_rate=0.1, | |
norm_layer='nn.LayerNorm', | |
eps=1e-6, | |
act='nn.GELU', | |
last_stage=True, | |
sub_num=2, | |
use_first_sub=True, | |
flatten=False, | |
**kwargs, | |
): | |
super().__init__() | |
self.img_size = img_size | |
self.embed_dim = embed_dim | |
self.flatten = flatten | |
patch_merging = None if patch_merging != 'Conv' and patch_merging != 'Pool' else patch_merging | |
self.patch_embed = PatchEmbed( | |
img_size=img_size, | |
in_channels=in_channels, | |
embed_dim=embed_dim[0], | |
sub_num=sub_num, | |
) | |
if img_size[1] == -1: | |
self.HW = [img_size[0] // (2**sub_num), -1] | |
else: | |
self.HW = [ | |
img_size[0] // (2**sub_num), img_size[1] // (2**sub_num) | |
] | |
pos_embed = torch.zeros([1, max_size[0] * max_size[1], embed_dim[0]], | |
dtype=torch.float32) | |
trunc_normal_(pos_embed, mean=0, std=0.02) | |
self.pos_embed = nn.Parameter( | |
pos_embed.transpose(1, 2).reshape(1, embed_dim[0], max_size[0], | |
max_size[1]), | |
requires_grad=True, | |
) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
conv_block_num = sum( | |
[1 if mixer_type == 'ConvB' else 0 for mixer_type in mixer]) | |
Block_unit = [ConvBlock for _ in range(conv_block_num) | |
] + [Block for _ in range(len(mixer) - conv_block_num)] | |
HW = self.HW | |
dpr = np.linspace(0, drop_path_rate, sum(depth)) | |
self.conv_blocks1 = nn.ModuleList([ | |
Block_unit[0:depth[0]][i]( | |
dim=embed_dim[0], | |
num_heads=num_heads[0], | |
mixer=mixer[0:depth[0]][i], | |
HW=self.HW, | |
local_mixer=local_mixer[0], | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop_rate, | |
act_layer=eval(act), | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[0:depth[0]][i], | |
norm_layer=norm_layer, | |
eps=eps, | |
) for i in range(depth[0]) | |
]) | |
if patch_merging is not None: | |
if use_first_sub: | |
stride = [2, 1] | |
HW = [self.HW[0] // 2, self.HW[1]] | |
else: | |
stride = [1, 1] | |
HW = self.HW | |
sub_sample1 = nn.Sequential( | |
nn.Conv2d(embed_dim[0], | |
embed_dim[1], | |
3, | |
stride=stride, | |
padding=1), | |
nn.BatchNorm2d(embed_dim[1]), | |
) | |
self.conv_blocks1.append(sub_sample1) | |
self.patch_merging = patch_merging | |
self.trans_blocks = nn.ModuleList() | |
for i in range(depth[1]): | |
block = Block_unit[depth[0]:depth[0] + depth[1]][i]( | |
dim=embed_dim[1], | |
num_heads=num_heads[1], | |
mixer=mixer[depth[0]:depth[0] + depth[1]][i], | |
HW=HW, | |
local_mixer=local_mixer[1], | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop_rate, | |
act_layer=eval(act), | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[depth[0]:depth[0] + depth[1]][i], | |
norm_layer=norm_layer, | |
eps=eps, | |
) | |
if i + depth[0] < conv_block_num: | |
self.conv_blocks1.append(block) | |
else: | |
self.trans_blocks.append(block) | |
if patch_merging is not None: | |
self.trans_blocks.append(DownSConv(embed_dim[1], embed_dim[2])) | |
HW = [HW[0] // 2, -1] | |
for i in range(depth[2]): | |
self.trans_blocks.append(Block_unit[depth[0] + depth[1]:][i]( | |
dim=embed_dim[2], | |
num_heads=num_heads[2], | |
mixer=mixer[depth[0] + depth[1]:][i], | |
HW=HW, | |
local_mixer=local_mixer[2], | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop_rate, | |
act_layer=eval(act), | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[depth[0] + depth[1]:][i], | |
norm_layer=norm_layer, | |
eps=eps, | |
)) | |
self.last_stage = last_stage | |
self.out_channels = embed_dim[-1] | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, mean=0, std=0.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
zeros_(m.bias) | |
if isinstance(m, nn.LayerNorm): | |
zeros_(m.bias) | |
ones_(m.weight) | |
if isinstance(m, nn.Conv2d): | |
kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
def no_weight_decay(self): | |
return {'pos_embed', 'sub_sample1', 'sub_sample2'} | |
def forward(self, x): | |
x = self.patch_embed(x) | |
w = x.shape[-1] | |
x = x + self.pos_embed[:, :, :x.shape[-2], :w] | |
for blk in self.conv_blocks1: | |
x = blk(x) | |
x = x.flatten(2).transpose(1, 2) | |
for blk in self.trans_blocks: | |
x, w = blk(x, w) | |
B, N, C = x.shape | |
if not self.flatten: | |
x = x.transpose(1, 2).reshape(B, C, -1, w) | |
return x | |