Spaces:
Running
Running
import numpy as np | |
import torch | |
from .ctc_postprocess import BaseRecLabelDecode | |
class NRTRLabelDecode(BaseRecLabelDecode): | |
"""Convert between text-label and text-index.""" | |
def __init__(self, | |
character_dict_path=None, | |
use_space_char=True, | |
**kwargs): | |
super(NRTRLabelDecode, self).__init__(character_dict_path, | |
use_space_char) | |
def __call__(self, preds, batch=None, *args, **kwargs): | |
preds = preds['res'] | |
if len(preds) == 2: | |
preds_id = preds[0] | |
preds_prob = preds[1] | |
if isinstance(preds_id, torch.Tensor): | |
preds_id = preds_id.detach().cpu().numpy() | |
if isinstance(preds_prob, torch.Tensor): | |
preds_prob = preds_prob.detach().cpu().numpy() | |
if preds_id[0][0] == 2: | |
preds_idx = preds_id[:, 1:] | |
preds_prob = preds_prob[:, 1:] | |
else: | |
preds_idx = preds_id | |
text = self.decode(preds_idx, | |
preds_prob, | |
is_remove_duplicate=False) | |
if batch is None: | |
return text | |
label = self.decode(batch[1][:, 1:].cpu().numpy()) | |
else: | |
if isinstance(preds, torch.Tensor): | |
preds = preds.detach().cpu().numpy() | |
preds_idx = preds.argmax(axis=2) | |
preds_prob = preds.max(axis=2) | |
text = self.decode(preds_idx, | |
preds_prob, | |
is_remove_duplicate=False) | |
if batch is None: | |
return text | |
label = self.decode(batch[1][:, 1:].cpu().numpy()) | |
return text, label | |
def add_special_char(self, dict_character): | |
dict_character = ['blank', '<unk>', '<s>', '</s>'] + dict_character | |
return dict_character | |
def decode(self, text_index, text_prob=None, is_remove_duplicate=False): | |
"""convert text-index into text-label.""" | |
result_list = [] | |
batch_size = len(text_index) | |
for batch_idx in range(batch_size): | |
char_list = [] | |
conf_list = [] | |
for idx in range(len(text_index[batch_idx])): | |
try: | |
char_idx = self.character[int(text_index[batch_idx][idx])] | |
except: | |
continue | |
if char_idx == '</s>': # end | |
break | |
char_list.append(char_idx) | |
if text_prob is not None: | |
conf_list.append(text_prob[batch_idx][idx]) | |
else: | |
conf_list.append(1) | |
text = ''.join(char_list) | |
result_list.append((text, np.mean(conf_list).tolist())) | |
return result_list | |