Spaces:
Running
Running
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
class CELoss(nn.Module): | |
def __init__(self, | |
smoothing=False, | |
with_all=False, | |
ignore_index=-1, | |
**kwargs): | |
super(CELoss, self).__init__() | |
if ignore_index >= 0: | |
self.loss_func = nn.CrossEntropyLoss(reduction='mean', | |
ignore_index=ignore_index) | |
else: | |
self.loss_func = nn.CrossEntropyLoss(reduction='mean') | |
self.smoothing = smoothing | |
self.with_all = with_all | |
def forward(self, pred, batch): | |
pred = pred['res'] | |
if isinstance(pred, dict): # for ABINet | |
loss = {} | |
loss_sum = [] | |
for name, logits in pred.items(): | |
if isinstance(logits, list): | |
logit_num = len(logits) | |
all_tgt = torch.cat([batch[1]] * logit_num, 0) | |
all_logits = torch.cat(logits, 0) | |
flt_logtis = all_logits.reshape([-1, all_logits.shape[2]]) | |
flt_tgt = all_tgt.reshape([-1]) | |
else: | |
flt_logtis = logits.reshape([-1, logits.shape[2]]) | |
flt_tgt = batch[1].reshape([-1]) | |
loss[name + '_loss'] = self.loss_func(flt_logtis, flt_tgt) | |
loss_sum.append(loss[name + '_loss']) | |
loss['loss'] = sum(loss_sum) | |
return loss | |
else: | |
if self.with_all: # for ViTSTR | |
tgt = batch[1] | |
pred = pred.reshape([-1, pred.shape[2]]) | |
tgt = tgt.reshape([-1]) | |
loss = self.loss_func(pred, tgt) | |
return {'loss': loss} | |
else: # for NRTR | |
max_len = batch[2].max() | |
tgt = batch[1][:, 1:2 + max_len] | |
pred = pred.reshape([-1, pred.shape[2]]) | |
tgt = tgt.reshape([-1]) | |
if self.smoothing: | |
eps = 0.1 | |
pred.shape[1] | |
one_hot = F.one_hot(tgt, pred.shape[1]) | |
one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (-1) | |
log_prb = F.log_softmax(pred, dim=1) | |
non_pad_mask = torch.not_equal( | |
tgt, | |
torch.zeros(tgt.shape, | |
dtype=tgt.dtype, | |
device=tgt.device)) | |
loss = -(one_hot * log_prb).sum(dim=1) | |
loss = loss.masked_select(non_pad_mask).mean() | |
else: | |
loss = self.loss_func(pred, tgt) | |
return {'loss': loss} | |