Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
class GELU(nn.Module): | |
def __init__(self, inplace=True): | |
super(GELU, self).__init__() | |
self.inplace = inplace | |
def forward(self, x): | |
return torch.nn.functional.gelu(x) | |
class Swish(nn.Module): | |
def __init__(self, inplace=True): | |
super(Swish, self).__init__() | |
self.inplace = inplace | |
def forward(self, x): | |
if self.inplace: | |
x.mul_(torch.sigmoid(x)) | |
return x | |
else: | |
return x * torch.sigmoid(x) | |
class Activation(nn.Module): | |
def __init__(self, act_type, inplace=True): | |
super(Activation, self).__init__() | |
act_type = act_type.lower() | |
if act_type == 'relu': | |
self.act = nn.ReLU(inplace=inplace) | |
elif act_type == 'relu6': | |
self.act = nn.ReLU6(inplace=inplace) | |
elif act_type == 'sigmoid': | |
self.act = nn.Sigmoid() | |
elif act_type == 'hard_sigmoid': | |
self.act = nn.Hardsigmoid(inplace) | |
elif act_type == 'hard_swish': | |
self.act = nn.Hardswish(inplace=inplace) | |
elif act_type == 'leakyrelu': | |
self.act = nn.LeakyReLU(inplace=inplace) | |
elif act_type == 'gelu': | |
self.act = GELU(inplace=inplace) | |
elif act_type == 'swish': | |
self.act = Swish(inplace=inplace) | |
else: | |
raise NotImplementedError | |
def forward(self, inputs): | |
return self.act(inputs) | |
def drop_path(x, | |
drop_prob: float = 0.0, | |
training: bool = False, | |
scale_by_keep: bool = True): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of | |
residual blocks). | |
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, | |
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... | |
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for | |
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use | |
'survival rate' as the argument. | |
""" | |
if drop_prob == 0.0 or not training: | |
return x | |
keep_prob = 1 - drop_prob | |
shape = (x.shape[0], ) + (1, ) * ( | |
x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = x.new_empty(shape).bernoulli_(keep_prob) | |
if keep_prob > 0.0 and scale_by_keep: | |
random_tensor.div_(keep_prob) | |
return x * random_tensor | |
class DropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of | |
residual blocks).""" | |
def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
self.scale_by_keep = scale_by_keep | |
def forward(self, x): | |
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep) | |
def extra_repr(self): | |
return f'drop_prob={round(self.drop_prob,3):0.3f}' | |
class Identity(nn.Module): | |
def __init__(self): | |
super(Identity, self).__init__() | |
def forward(self, input): | |
return input | |
class Mlp(nn.Module): | |
def __init__( | |
self, | |
in_features, | |
hidden_features=None, | |
out_features=None, | |
act_layer=nn.GELU, | |
drop=0.0, | |
): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class Attention(nn.Module): | |
def __init__(self, | |
dim, | |
num_heads=8, | |
qkv_bias=False, | |
qk_scale=None, | |
attn_drop=0.0, | |
proj_drop=0.0): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights | |
self.scale = qk_scale or head_dim**-0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x): | |
B, N, C = x.shape | |
qkv = (self.qkv(x).reshape(B, N, 3, self.num_heads, | |
C // self.num_heads).permute(2, 0, 3, 1, 4)) | |
q, k, v = qkv[0], qkv[1], qkv[ | |
2] # make torchscript happy (cannot use tensor as tuple) | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Module): | |
def __init__( | |
self, | |
dim, | |
num_heads, | |
mlp_ratio=4.0, | |
qkv_bias=False, | |
qk_scale=None, | |
drop=0.0, | |
attn_drop=0.0, | |
drop_path=0.0, | |
act_layer=nn.GELU, | |
norm_layer=nn.LayerNorm, | |
): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
attn_drop=attn_drop, | |
proj_drop=drop, | |
) | |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
self.drop_path = DropPath( | |
drop_path) if drop_path > 0.0 else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, | |
hidden_features=mlp_hidden_dim, | |
act_layer=act_layer, | |
drop=drop) | |
def forward(self, x): | |
x = x + self.drop_path(self.attn(self.norm1(x))) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
class PatchEmbed(nn.Module): | |
"""Image to Patch Embedding.""" | |
def __init__(self, | |
img_size=[32, 128], | |
patch_size=[4, 4], | |
in_chans=3, | |
embed_dim=768): | |
super().__init__() | |
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // | |
patch_size[0]) | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.num_patches = num_patches | |
self.proj = nn.Conv2d(in_chans, | |
embed_dim, | |
kernel_size=patch_size, | |
stride=patch_size) | |
def forward(self, x): | |
B, C, H, W = x.shape | |
# FIXME look at relaxing size constraints | |
assert ( | |
H == self.img_size[0] and W == self.img_size[1] | |
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." | |
x = self.proj(x).flatten(2).transpose(1, 2) | |
return x | |