Global: device: gpu epoch_num: 20 log_smooth_window: 20 print_batch_step: 10 output_dir: ./output/rec/u14m_filter/resnet45_trans_visionlan_LA/ eval_epoch_step: [0, 1] eval_batch_step: [0, 500] cal_metric_during_train: True pretrained_model: # ./output/rec/u14m_filter/resnet45_trans_visionlan_LF2/best.pth checkpoints: use_tensorboard: false infer_img: # for data or label process character_dict_path: &character_dict_path ./tools/utils/EN_symbol_dict.txt # 96en # ./tools/utils/ppocr_keys_v1.txt # ch max_text_length: &max_text_length 25 use_space_char: &use_space_char False save_res_path: ./output/rec/u14m_filter/predicts_resnet45_trans_visionlan_LA.txt grad_clip_val: 20 use_amp: True Optimizer: name: Adam lr: 0.0002 # for 4gpus bs128/gpu weight_decay: 0.0 LRScheduler: name: MultiStepLR milestones: [12] Architecture: model_type: rec algorithm: VisionLAN Transform: Encoder: name: ResNet45 in_channels: 3 strides: [2, 2, 2, 1, 1] Decoder: name: VisionLANDecoder training_step: &training_step 'LA' n_position: 256 Loss: name: VisionLANLoss training_step: *training_step PostProcess: name: VisionLANLabelDecode character_dict_path: *character_dict_path use_space_char: *use_space_char Metric: name: RecMetric main_indicator: acc is_filter: True Train: dataset: name: LMDBDataSet data_dir: ../Union14M-L-LMDB-Filtered transforms: - DecodeImagePIL: # load image img_mode: RGB - PARSeqAugPIL: - VisionLANLabelEncode: character_dict_path: *character_dict_path use_space_char: *use_space_char max_text_length: *max_text_length - RecTVResize: image_shape: [64, 256] padding: False - KeepKeys: keep_keys: ['image', 'label', 'label_res', 'label_sub', 'label_id', 'length'] # dataloader will return list in this order loader: shuffle: True batch_size_per_card: 128 drop_last: True num_workers: 4 Eval: dataset: name: LMDBDataSet data_dir: ../evaluation transforms: - DecodeImagePIL: # load image img_mode: RGB - VisionLANLabelEncode: character_dict_path: *character_dict_path use_space_char: *use_space_char max_text_length: *max_text_length - RecTVResize: image_shape: [64, 256] padding: False - KeepKeys: keep_keys: ['image', 'label', 'label_res', 'label_sub', 'label_id', 'length'] # dataloader will return list in this order loader: shuffle: False drop_last: False batch_size_per_card: 128 num_workers: 2