import numpy as np import torch import torch.nn as nn class ConvBNLayer(nn.Module): def __init__(self, in_channels, out_channels, kernel, stride=1, act='ReLU'): super(ConvBNLayer, self).__init__() self.act_flag = act self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=2 if stride == (1, 1) else kernel, stride=stride, padding=(kernel - 1) // 2, dilation=2 if stride == (1, 1) else 1) self.bn = nn.BatchNorm2d(out_channels) self.act = nn.ReLU(True) def forward(self, x): x = self.conv(x) x = self.bn(x) if self.act_flag != 'None': x = self.act(x) return x class Shortcut(nn.Module): def __init__(self, in_channels, out_channels, stride, is_first=False): super(Shortcut, self).__init__() self.use_conv = True if in_channels != out_channels or stride != 1 or is_first is True: if stride == (1, 1): self.conv = ConvBNLayer(in_channels, out_channels, 1, 1) else: self.conv = ConvBNLayer(in_channels, out_channels, 1, stride) else: self.use_conv = False def forward(self, x): if self.use_conv: x = self.conv(x) return x class BottleneckBlock(nn.Module): def __init__(self, in_channels, out_channels, stride): super(BottleneckBlock, self).__init__() self.conv0 = ConvBNLayer(in_channels, out_channels, kernel=1) self.conv1 = ConvBNLayer(out_channels, out_channels, kernel=3, stride=stride) self.conv2 = ConvBNLayer(out_channels, out_channels * 4, kernel=1, act='None') self.short = Shortcut(in_channels, out_channels * 4, stride=stride) self.out_channels = out_channels * 4 self.relu = nn.ReLU(True) def forward(self, x): y = self.conv0(x) y = self.conv1(y) y = self.conv2(y) y = y + self.short(x) y = self.relu(y) return y class BasicBlock(nn.Module): def __init__(self, in_channels, out_channels, stride, is_first): super(BasicBlock, self).__init__() self.conv0 = ConvBNLayer(in_channels, out_channels, kernel=3, stride=stride) self.conv1 = ConvBNLayer(out_channels, out_channels, kernel=3, act='None') self.short = Shortcut(in_channels, out_channels, stride, is_first) self.out_chanels = out_channels self.relu = nn.ReLU(True) def forward(self, x): y = self.conv0(x) y = self.conv1(y) y = y + self.short(x) y = self.relu(y) return y class ResNet_FPN(nn.Module): def __init__(self, in_channels=1, layers=50, **kwargs): super(ResNet_FPN, self).__init__() supported_layers = { 18: { 'depth': [2, 2, 2, 2], 'block_class': BasicBlock }, 34: { 'depth': [3, 4, 6, 3], 'block_class': BasicBlock }, 50: { 'depth': [3, 4, 6, 3], 'block_class': BottleneckBlock }, 101: { 'depth': [3, 4, 23, 3], 'block_class': BottleneckBlock }, 152: { 'depth': [3, 8, 36, 3], 'block_class': BottleneckBlock } } stride_list = [(2, 2), ( 2, 2, ), (1, 1), (1, 1)] num_filters = [64, 128, 256, 512] self.depth = supported_layers[layers]['depth'] self.F = [] # print(f"in_channels:{in_channels}") self.conv = ConvBNLayer(in_channels=in_channels, out_channels=64, kernel=7, stride=2) #64*256 ->32*128 self.block_list = nn.ModuleList() in_ch = 64 if layers >= 50: for block in range(len(self.depth)): for i in range(self.depth[block]): self.block_list.append( BottleneckBlock( in_channels=in_ch, out_channels=num_filters[block], stride=stride_list[block] if i == 0 else 1)) in_ch = num_filters[block] * 4 else: for block in range(len(self.depth)): for i in range(self.depth[block]): if i == 0 and block != 0: stride = (2, 1) else: stride = (1, 1) basic_block = BasicBlock( in_channels=in_ch, out_channels=num_filters[block], stride=stride_list[block] if i == 0 else 1, is_first=block == i == 0) in_ch = basic_block.out_chanels self.block_list.append(basic_block) out_ch_list = [in_ch // 4, in_ch // 2, in_ch] self.base_block = nn.ModuleList() self.conv_trans = [] self.bn_block = [] for i in [-2, -3]: in_channels = out_ch_list[i + 1] + out_ch_list[i] self.base_block.append( nn.Conv2d(in_channels, out_ch_list[i], kernel_size=1)) #进行升通道 self.base_block.append( nn.Conv2d(out_ch_list[i], out_ch_list[i], kernel_size=3, padding=1)) #进行合并 self.base_block.append( nn.Sequential(nn.BatchNorm2d(out_ch_list[i]), nn.ReLU(True))) self.base_block.append(nn.Conv2d(out_ch_list[i], 512, kernel_size=1)) self.out_channels = 512 def forward(self, x): # print(f"before resnetfpn x.shape:{x.shape}") x = self.conv(x) fpn_list = [] F = [] for i in range(len(self.depth)): fpn_list.append(np.sum(self.depth[:i + 1])) for i, block in enumerate(self.block_list): x = block(x) for number in fpn_list: if i + 1 == number: F.append(x) base = F[-1] j = 0 for i, block in enumerate(self.base_block): if i % 3 == 0 and i < 6: j = j + 1 b, c, w, h = F[-j - 1].size() if [w, h] == list(base.size()[2:]): base = base else: base = self.conv_trans[j - 1](base) base = self.bn_block[j - 1](base) base = torch.cat([base, F[-j - 1]], dim=1) base = block(base) return base