import numpy as np import torch from .ctc_postprocess import BaseRecLabelDecode class CharLabelDecode(BaseRecLabelDecode): """Convert between text-label and text-index.""" def __init__(self, character_dict_path=None, use_space_char=True, **kwargs): super(CharLabelDecode, self).__init__(character_dict_path, use_space_char) def __call__(self, preds, label=None, *args, **kwargs): if len(preds) >= 4: preds_id = preds[0] preds_prob = preds[1] char_preds = preds[2] if isinstance(preds_id, torch.Tensor): preds_id = preds_id.numpy() if isinstance(preds_prob, torch.Tensor): preds_prob = preds_prob.numpy() if preds_id[0][0] == 2: preds_idx = preds_id[:, 1:] preds_prob = preds_prob[:, 1:] # char_preds = char_preds[:, 1:] else: preds_idx = preds_id char_preds = char_preds.numpy() char_preds_idx = char_preds.argmax(-1) + 4 char_preds_prob = char_preds.max(-1) text, text_box = self.decode(preds_idx, preds_prob, char_preds_idx, char_preds_prob) else: preds_logit = preds[0].numpy() char_preds = preds[1].numpy() # if isinstance(preds, torch.Tensor): # preds = preds.numpy() preds_idx = preds_logit.argmax(axis=2) preds_prob = preds_logit.max(axis=2) char_preds_idx = char_preds.argmax(-1) + 4 char_preds_prob = char_preds.max(-1) text, text_box = self.decode(preds_idx, preds_prob, char_preds_idx, char_preds_prob) if label is None: return text, text_box label = self.decode(label[:, 1:]) return text, text_box, label def add_special_char(self, dict_character): dict_character = ['blank', '', '', ''] + dict_character return dict_character def decode( self, text_index, text_prob=None, char_text_index=None, char_text_prob=None, is_remove_duplicate=False, ): """convert text-index into text-label.""" result_list = [] box_result_list = [] batch_size = len(text_index) for batch_idx in range(batch_size): char_list = [] conf_list = [] char_box_list = [] conf_box_list = [] for idx in range(len(text_index[batch_idx])): try: char_idx = self.character[int(text_index[batch_idx][idx])] if char_text_index is not None: char_box_idx = self.character[int( char_text_index[batch_idx][idx])] except: continue if char_idx == '': # end break char_list.append(char_idx) if char_text_index is not None: char_box_list.append(char_box_idx) if text_prob is not None: conf_list.append(text_prob[batch_idx][idx]) else: conf_list.append(1) if char_text_prob is not None: conf_box_list.append(char_text_prob[batch_idx][idx]) else: conf_box_list.append(1) text = ''.join(char_list) result_list.append((text, np.mean(conf_list).tolist())) if char_text_index is not None: text_box = ''.join(char_box_list) box_result_list.append( (text_box, np.mean(conf_box_list).tolist())) if char_text_index is not None: return result_list, box_result_list return result_list