Global: device: gpu epoch_num: 10 log_smooth_window: 20 print_batch_step: 10 output_dir: ./output/rec/u14m_filter/vit_nrtr_ft_mae/ save_epoch_step: 1 # evaluation is run every 2000 iterations eval_batch_step: [0, 500] eval_epoch_step: [0, 1] cal_metric_during_train: True pretrained_model: # ./open_ocr_vit_small_params.pth checkpoints: use_tensorboard: false infer_img: # for data or label process character_dict_path: &character_dict_path ./tools/utils/EN_symbol_dict.txt # 96en # ./tools/utils/ppocr_keys_v1.txt # ch max_text_length: &max_text_length 25 use_space_char: &use_space_char False save_res_path: ./output/rec/u14m_filter/predicts_vit_nrtr_ft_mae.txt use_amp: True project_name: maerec Optimizer: name: AdamW lr: 0.00065 # for 4gpus bs256/gpu weight_decay: 0.05 filter_bias_and_bn: True LRScheduler: name: OneCycleLR warmup_epoch: 1.5 # pct_start 0.075*20 : 1.5ep cycle_momentum: False Architecture: model_type: rec algorithm: BGPD in_channels: 3 Transform: Encoder: name: ViT img_size: [32, 128] patch_size: [4, 4] embed_dim: 384 depth: 12 num_heads: 6 mlp_ratio: 4 qkv_bias: True use_cls_token: True Decoder: name: NRTRDecoder num_encoder_layers: -1 beam_size: 0 num_decoder_layers: 6 nhead: 8 max_len: *max_text_length Loss: name: ARLoss PostProcess: name: ARLabelDecode character_dict_path: *character_dict_path use_space_char: *use_space_char Metric: name: RecMetric main_indicator: acc is_filter: True Train: dataset: name: LMDBDataSet data_dir: ../Union14M-L-LMDB-Filtered transforms: - DecodeImagePIL: # load image img_mode: RGB - PARSeqAugPIL: - ARLabelEncode: # Class handling label character_dict_path: *character_dict_path use_space_char: *use_space_char max_text_length: *max_text_length - RecTVResize: image_shape: [32, 128] padding: False - KeepKeys: keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order loader: shuffle: True batch_size_per_card: 256 drop_last: True num_workers: 4 Eval: dataset: name: LMDBDataSet data_dir: ../evaluation/ transforms: - DecodeImagePIL: # load image img_mode: RGB - ARLabelEncode: # Class handling label character_dict_path: *character_dict_path use_space_char: *use_space_char max_text_length: *max_text_length - RecTVResize: image_shape: [32, 128] padding: False - KeepKeys: keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order loader: shuffle: False drop_last: False batch_size_per_card: 256 num_workers: 4