Global: device: gpu epoch_num: 20 log_smooth_window: 20 print_batch_step: 10 output_dir: ./output/rec/u14m_filter/resnet50_fpn_srn eval_epoch_step: [0, 1] eval_batch_step: [0, 500] cal_metric_during_train: True pretrained_model: checkpoints: use_tensorboard: false infer_img: # for data or label process character_dict_path: ./tools/utils/EN_symbol_dict.txt max_text_length: 25 use_space_char: False save_res_path: ./output/rec/u14m_filter/predicts_resnet50_fpn_srn.txt # find_unused_parameters: True use_amp: True grad_clip_val: 10 Optimizer: name: Adam lr: 0.002 # for 4gpus bs128/gpu weight_decay: 0.0 filter_bias_and_bn: False LRScheduler: name: OneCycleLR warmup_epoch: 1.5 # pct_start 0.075*20 = 1.5ep cycle_momentum: False Architecture: model_type: rec algorithm: SRN in_channels: 3 Transform: Encoder: name: ResNet_FPN layers: 50 Decoder: name: SRNDecoder hidden_dims: 512 Loss: name: SRNLoss # smoothing: True Metric: name: RecMetric main_indicator: acc is_filter: True PostProcess: name: SRNLabelDecode Train: dataset: name: LMDBDataSet data_dir: ../Union14M-L-LMDB-Filtered transforms: - DecodeImagePIL: # load image img_mode: RGB channel_first: False - PARSeqAugPIL: - SRNLabelEncode: # Class handling label - RecTVResize: image_shape: [64, 256] # h:48 w:[48,160] padding: False - KeepKeys: keep_keys: ['image', 'label'] # dataloader will return list in this order loader: shuffle: True batch_size_per_card: 128 drop_last: True num_workers: 4 Eval: dataset: name: LMDBDataSet data_dir: ../evaluation transforms: - DecodeImagePIL: # load image img_mode: RGB channel_first: False - SRNLabelEncode: # Class handling label - RecTVResize: image_shape: [64, 256] # h:48 w:[48,160] padding: False - KeepKeys: keep_keys: ['image', 'label'] # dataloader will return list in this order loader: shuffle: False drop_last: False batch_size_per_card: 128 num_workers: 2