Global: device: gpu epoch_num: 20 log_smooth_window: 20 print_batch_step: 10 output_dir: ./output/rec/u14m_filter/resnet45_trans_matrn/ eval_epoch_step: [0, 1] eval_batch_step: [0, 500] cal_metric_during_train: True pretrained_model: # ./openocr_nolang_abinet_lang.pth checkpoints: use_tensorboard: false infer_img: # for data or label process character_dict_path: ./tools/utils/EN_symbol_dict.txt max_text_length: 25 use_space_char: False save_res_path: ./output/rec/u14m_filter/predicts_resnet45_trans_matrn.txt grad_clip_val: 20 use_amp: True Optimizer: name: Adam lr: 0.000133 # 4gpus 128bs/gpu weight_decay: 0.0 filter_bias_and_bn: False LRScheduler: name: MultiStepLR milestones: [12, 18] gamma: 0.1 Architecture: model_type: rec algorithm: MATRN Transform: Encoder: name: ResNet45 in_channels: 3 strides: [2, 1, 2, 1, 1] Decoder: name: MATRNDecoder iter_size: 3 Loss: name: ABINetLoss align_weight: 3.0 PostProcess: name: ABINetLabelDecode Metric: name: RecMetric main_indicator: acc is_filter: True Train: dataset: name: LMDBDataSet data_dir: ../Union14M-L-LMDB-Filtered transforms: - DecodeImagePIL: # load image img_mode: RGB - PARSeqAugPIL: - ABINetLabelEncode: - RecTVResize: image_shape: [32, 128] padding: False - KeepKeys: keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order loader: shuffle: True batch_size_per_card: 128 drop_last: True num_workers: 4 Eval: dataset: name: LMDBDataSet data_dir: ../evaluation transforms: - DecodeImagePIL: # load image img_mode: RGB - ABINetLabelEncode: - RecTVResize: image_shape: [32, 128] padding: False - KeepKeys: keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order loader: shuffle: False drop_last: False batch_size_per_card: 256 num_workers: 2