Global: device: gpu epoch_num: 60 log_smooth_window: 20 print_batch_step: 10 output_dir: ./output/rec/syn/svtr_base_nrtr/ save_epoch_step: 1 # evaluation is run every 2000 iterations eval_batch_step: [0, 500] eval_epoch_step: [0, 1] cal_metric_during_train: True pretrained_model: checkpoints: use_tensorboard: false infer_img: # for data or label process character_dict_path: &character_dict_path ./tools/utils/EN_symbol_dict.txt # 96en # ./tools/utils/ppocr_keys_v1.txt # ch max_text_length: &max_text_length 25 use_space_char: &use_space_char False save_res_path: ./output/rec/syn/predicts_svtr_base_nrtr.txt use_amp: True Optimizer: name: AdamW lr: 0.0005 # for 4gpus bs256/gpu weight_decay: 0.05 filter_bias_and_bn: True LRScheduler: name: CosineAnnealingLR warmup_epoch: 6 Architecture: model_type: rec algorithm: NRTR in_channels: 3 Transform: Encoder: name: SVTRNet img_size: [32, 100] out_char_num: 25 out_channels: 256 patch_merging: 'Conv' embed_dim: [128, 256, 384] depth: [6, 6, 6] num_heads: [4, 8, 12] mixer: ['Conv','Conv','Conv','Conv','Conv','Conv', 'Conv','Conv', 'Global','Global','Global','Global','Global','Global','Global','Global','Global','Global'] local_mixer: [[5, 5], [5, 5], [5, 5]] last_stage: False prenorm: True Decoder: name: NRTRDecoder num_encoder_layers: -1 beam_size: 0 num_decoder_layers: 6 nhead: 12 max_len: *max_text_length Loss: name: ARLoss PostProcess: name: ARLabelDecode character_dict_path: *character_dict_path use_space_char: *use_space_char Metric: name: RecMetric main_indicator: acc is_filter: True Train: dataset: name: STRLMDBDataSet data_dir: ./ transforms: - DecodeImage: # load image img_mode: BGR channel_first: False # - SVTRRecAug: - ARLabelEncode: # Class handling label character_dict_path: *character_dict_path use_space_char: *use_space_char max_text_length: *max_text_length - SVTRResize: image_shape: [3, 32, 100] padding: False - KeepKeys: keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order loader: shuffle: True batch_size_per_card: 256 drop_last: True num_workers: 4 Eval: dataset: name: LMDBDataSet data_dir: ../evaluation/ transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - ARLabelEncode: # Class handling label character_dict_path: *character_dict_path use_space_char: *use_space_char max_text_length: *max_text_length - SVTRResize: image_shape: [3, 32, 100] padding: False - KeepKeys: keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order loader: shuffle: False drop_last: False batch_size_per_card: 256 num_workers: 4