Global: device: gpu epoch_num: 20 log_smooth_window: 20 print_batch_step: 10 output_dir: ./output/rec/u14m_filter/svtrv2_lnconv_smtr_bi save_epoch_step: 1 # evaluation is run every 2000 iterations eval_batch_step: [0, 500] eval_epoch_step: [0, 1] cal_metric_during_train: True pretrained_model: checkpoints: use_tensorboard: false infer_img: ../ltb/img # for data or label process character_dict_path: &character_dict_path ./tools/utils/EN_symbol_dict.txt # 96en # ./tools/utils/ppocr_keys_v1.txt # ch max_text_length: &max_text_length 25 use_space_char: &use_space_char False save_res_path: ./output/rec/u14m_filter/predicts_svtrv2_lnconv_smtr_bi.txt use_amp: True distributed: true Optimizer: name: AdamW lr: 0.000325 weight_decay: 0.05 filter_bias_and_bn: True LRScheduler: name: OneCycleLR warmup_epoch: 1.5 # pct_start 0.075*20 = 1.5ep cycle_momentum: False Architecture: model_type: rec algorithm: SMTR in_channels: 3 Transform: Encoder: name: SVTRv2LNConv use_pos_embed: False dims: [128, 256, 384] depths: [6, 6, 6] num_heads: [4, 8, 12] mixer: [['Conv','Conv','Conv','Conv','Conv','Conv'],['Conv','Conv','FGlobal','Global','Global','Global'],['Global','Global','Global','Global','Global','Global']] local_k: [[5, 5], [5, 5], [-1, -1]] sub_k: [[1, 1], [2, 1], [-1, -1]] last_stage: False Decoder: name: SMTRDecoder num_layer: 1 ds: True max_len: *max_text_length next_mode: &next True sub_str_len: &subsl 5 infer_aug: True Loss: name: SMTRLoss PostProcess: name: SMTRLabelDecode next_mode: *next character_dict_path: *character_dict_path use_space_char: *use_space_char Metric: name: RecMetric main_indicator: acc is_filter: True Train: dataset: name: RatioDataSet ds_width: True padding: false padding_rand: true padding_doub: true data_dir_list: ['../Union14M-L-LMDB-Filtered/filter_train_challenging', '../Union14M-L-LMDB-Filtered/filter_train_hard', '../Union14M-L-LMDB-Filtered/filter_train_medium', '../Union14M-L-LMDB-Filtered/filter_train_normal', '../Union14M-L-LMDB-Filtered/filter_train_easy', ] transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - PARSeqAug: - SMTRLabelEncode: # Class handling label sub_str_len: *subsl character_dict_path: *character_dict_path use_space_char: *use_space_char max_text_length: *max_text_length - KeepKeys: keep_keys: ['image', 'label', 'label_subs', 'label_next', 'length_subs', 'label_subs_pre', 'label_next_pre', 'length_subs_pre', 'length'] # dataloader will return list in this order sampler: name: RatioSampler scales: [[128, 32]] # w, h # divide_factor: to ensure the width and height dimensions can be devided by downsampling multiple first_bs: &bs 128 fix_bs: false divided_factor: [4, 16] # w, h is_training: True loader: shuffle: True batch_size_per_card: *bs drop_last: True max_ratio: &max_ratio 12 num_workers: 4 Eval: dataset: name: SimpleDataSet data_dir: ../ltb/ label_file_list: ['../ltb/ultra_long_70_list.txt'] transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - ARLabelEncode: # Class handling label max_text_length: 200 - SliceResize: image_shape: [3, 32, 128] padding: False max_ratio: 12 - KeepKeys: keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order loader: shuffle: False drop_last: False batch_size_per_card: 1 num_workers: 2