import torch from torch import nn import torch.nn.functional as F class Head(nn.Module): def __init__(self, in_channels, kernel_list=[3, 2, 2], **kwargs): super(Head, self).__init__() self.conv1 = nn.Conv2d( in_channels=in_channels, out_channels=in_channels // 4, kernel_size=kernel_list[0], padding=int(kernel_list[0] // 2), bias=False, ) self.conv_bn1 = nn.BatchNorm2d(num_features=in_channels // 4, ) self.conv2 = nn.ConvTranspose2d( in_channels=in_channels // 4, out_channels=in_channels // 4, kernel_size=kernel_list[1], stride=2, ) self.conv_bn2 = nn.BatchNorm2d(num_features=in_channels // 4, ) self.conv3 = nn.ConvTranspose2d( in_channels=in_channels // 4, out_channels=1, kernel_size=kernel_list[2], stride=2, ) def forward(self, x, return_f=False): x = self.conv1(x) x = F.relu(self.conv_bn1(x)) x = self.conv2(x) x = F.relu(self.conv_bn2(x)) if return_f is True: f = x x = self.conv3(x) x = torch.sigmoid(x) if return_f is True: return x, f return x class DBHead(nn.Module): """ Differentiable Binarization (DB) for text detection: see https://arxiv.org/abs/1911.08947 args: params(dict): super parameters for build DB network """ def __init__(self, in_channels, k=50, **kwargs): super(DBHead, self).__init__() self.k = k self.binarize = Head(in_channels, **kwargs) self.thresh = Head(in_channels, **kwargs) def step_function(self, x, y): return torch.reciprocal(1 + torch.exp(-self.k * (x - y))) def forward(self, x, data=None): shrink_maps = self.binarize(x) if not self.training: return {'maps': shrink_maps} threshold_maps = self.thresh(x) binary_maps = self.step_function(shrink_maps, threshold_maps) y = torch.concat([shrink_maps, threshold_maps, binary_maps], dim=1) return {'maps': y}