import torch.nn.functional as F from torch import nn class LPVLoss(nn.Module): def __init__(self, label_smoothing=0.0, **kwargs): super(LPVLoss, self).__init__() self.label_smoothing = label_smoothing def forward(self, preds, batch): max_len = batch[2].max() tgt = batch[1][:, 1:2 + max_len] tgt = tgt.flatten(0, 1) loss = 0 loss_dict = {} for i, pred in enumerate(preds): pred = pred.flatten(0, 1) loss_i = F.cross_entropy( pred, tgt, reduction='mean', label_smoothing=self.label_smoothing, ignore_index=pred.shape[1] + 1, ) # self.loss_func(pred, tgt) loss += loss_i loss_dict['loss' + str(i)] = loss_i loss_dict['loss'] = loss return loss_dict