import torch import torch.nn as nn class GELU(nn.Module): def __init__(self, inplace=True): super(GELU, self).__init__() self.inplace = inplace def forward(self, x): return torch.nn.functional.gelu(x) class Swish(nn.Module): def __init__(self, inplace=True): super(Swish, self).__init__() self.inplace = inplace def forward(self, x): if self.inplace: x.mul_(torch.sigmoid(x)) return x else: return x * torch.sigmoid(x) class Activation(nn.Module): def __init__(self, act_type, inplace=True): super(Activation, self).__init__() act_type = act_type.lower() if act_type == 'relu': self.act = nn.ReLU(inplace=inplace) elif act_type == 'relu6': self.act = nn.ReLU6(inplace=inplace) elif act_type == 'sigmoid': self.act = nn.Sigmoid() elif act_type == 'hard_sigmoid': self.act = nn.Hardsigmoid(inplace) elif act_type == 'hard_swish': self.act = nn.Hardswish(inplace=inplace) elif act_type == 'leakyrelu': self.act = nn.LeakyReLU(inplace=inplace) elif act_type == 'gelu': self.act = GELU(inplace=inplace) elif act_type == 'swish': self.act = Swish(inplace=inplace) else: raise NotImplementedError def forward(self, inputs): return self.act(inputs) def drop_path(x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0], ) + (1, ) * ( x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = x.new_empty(shape).bernoulli_(keep_prob) if keep_prob > 0.0 and scale_by_keep: random_tensor.div_(keep_prob) return x * random_tensor class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True): super(DropPath, self).__init__() self.drop_prob = drop_prob self.scale_by_keep = scale_by_keep def forward(self, x): return drop_path(x, self.drop_prob, self.training, self.scale_by_keep) def extra_repr(self): return f'drop_prob={round(self.drop_prob,3):0.3f}' class Identity(nn.Module): def __init__(self): super(Identity, self).__init__() def forward(self, input): return input class Mlp(nn.Module): def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0, ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim**-0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv = (self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)) q, k, v = qkv[0], qkv[1], qkv[ 2] # make torchscript happy (cannot use tensor as tuple) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__( self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, ): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, ) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath( drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """Image to Patch Embedding.""" def __init__(self, img_size=[32, 128], patch_size=[4, 4], in_chans=3, embed_dim=768): super().__init__() num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): B, C, H, W = x.shape # FIXME look at relaxing size constraints assert ( H == self.img_size[0] and W == self.img_size[1] ), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) return x