# Scene Text Recognition Model Hub # Copyright 2022 Darwin Bautista # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from itertools import permutations from typing import Any, Optional import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from torch.nn.modules import transformer class DecoderLayer(nn.Module): """A Transformer decoder layer supporting two-stream attention (XLNet) This implements a pre-LN decoder, as opposed to the post-LN default in PyTorch.""" def __init__( self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation='gelu', layer_norm_eps=1e-5, ): super().__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=True) self.cross_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=True) # Implementation of Feedforward model self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps) self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps) self.norm_q = nn.LayerNorm(d_model, eps=layer_norm_eps) self.norm_c = nn.LayerNorm(d_model, eps=layer_norm_eps) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.dropout3 = nn.Dropout(dropout) self.activation = transformer._get_activation_fn(activation) def __setstate__(self, state): if 'activation' not in state: state['activation'] = F.gelu super().__setstate__(state) def forward_stream( self, tgt: Tensor, tgt_norm: Tensor, tgt_kv: Tensor, memory: Tensor, tgt_mask: Optional[Tensor], tgt_key_padding_mask: Optional[Tensor], ): """Forward pass for a single stream (i.e. content or query) tgt_norm is just a LayerNorm'd tgt. Added as a separate parameter for efficiency. Both tgt_kv and memory are expected to be LayerNorm'd too. memory is LayerNorm'd by ViT. """ tgt2, sa_weights = self.self_attn( tgt_norm, tgt_kv, tgt_kv, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask) tgt = tgt + self.dropout1(tgt2) tgt2, ca_weights = self.cross_attn(self.norm1(tgt), memory, memory) self.attn_map = ca_weights tgt = tgt + self.dropout2(tgt2) tgt2 = self.linear2( self.dropout(self.activation(self.linear1(self.norm2(tgt))))) tgt = tgt + self.dropout3(tgt2) return tgt, sa_weights, ca_weights def forward( self, query, content, memory, query_mask: Optional[Tensor] = None, content_mask: Optional[Tensor] = None, content_key_padding_mask: Optional[Tensor] = None, update_content: bool = True, ): query_norm = self.norm_q(query) content_norm = self.norm_c(content) query = self.forward_stream(query, query_norm, content_norm, memory, query_mask, content_key_padding_mask)[0] if update_content: content = self.forward_stream(content, content_norm, content_norm, memory, content_mask, content_key_padding_mask)[0] return query, content class Decoder(nn.Module): __constants__ = ['norm'] def __init__(self, decoder_layer, num_layers, norm): super().__init__() self.layers = transformer._get_clones(decoder_layer, num_layers) self.num_layers = num_layers self.norm = norm def forward( self, query, content, memory, query_mask: Optional[Tensor] = None, content_mask: Optional[Tensor] = None, content_key_padding_mask: Optional[Tensor] = None, ): for i, mod in enumerate(self.layers): last = i == len(self.layers) - 1 query, content = mod( query, content, memory, query_mask, content_mask, content_key_padding_mask, update_content=not last, ) query = self.norm(query) return query class TokenEmbedding(nn.Module): def __init__(self, charset_size: int, embed_dim: int): super().__init__() self.embedding = nn.Embedding(charset_size, embed_dim) self.embed_dim = embed_dim def forward(self, tokens: torch.Tensor): return math.sqrt(self.embed_dim) * self.embedding(tokens) class PARSeqDecoder(nn.Module): def __init__(self, in_channels, out_channels, max_label_length=25, embed_dim=384, dec_num_heads=12, dec_mlp_ratio=4, dec_depth=1, perm_num=6, perm_forward=True, perm_mirrored=True, decode_ar=True, refine_iters=1, dropout=0.1, **kwargs: Any) -> None: super().__init__() self.pad_id = out_channels - 1 self.eos_id = 0 self.bos_id = out_channels - 2 self.max_label_length = max_label_length self.decode_ar = decode_ar self.refine_iters = refine_iters decoder_layer = DecoderLayer(embed_dim, dec_num_heads, embed_dim * dec_mlp_ratio, dropout) self.decoder = Decoder(decoder_layer, num_layers=dec_depth, norm=nn.LayerNorm(embed_dim)) # Perm/attn mask stuff self.rng = np.random.default_rng() self.max_gen_perms = perm_num // 2 if perm_mirrored else perm_num self.perm_forward = perm_forward self.perm_mirrored = perm_mirrored # We don't predict nor self.head = nn.Linear(embed_dim, out_channels - 2) self.text_embed = TokenEmbedding(out_channels, embed_dim) # +1 for self.pos_queries = nn.Parameter( torch.Tensor(1, max_label_length + 1, embed_dim)) self.dropout = nn.Dropout(p=dropout) # Encoder has its own init. self.apply(self._init_weights) nn.init.trunc_normal_(self.pos_queries, std=0.02) def _init_weights(self, module: nn.Module): """Initialize the weights using the typical initialization schemes used in SOTA models.""" if isinstance(module, nn.Linear): nn.init.trunc_normal_(module.weight, std=0.02) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): nn.init.trunc_normal_(module.weight, std=0.02) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.Conv2d): nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu') if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, (nn.LayerNorm, nn.BatchNorm2d, nn.GroupNorm)): nn.init.ones_(module.weight) nn.init.zeros_(module.bias) @torch.jit.ignore def no_weight_decay(self): param_names = {'text_embed.embedding.weight', 'pos_queries'} return param_names def decode( self, tgt: torch.Tensor, memory: torch.Tensor, tgt_mask: Optional[Tensor] = None, tgt_padding_mask: Optional[Tensor] = None, tgt_query: Optional[Tensor] = None, tgt_query_mask: Optional[Tensor] = None, pos_query: torch.Tensor = None, ): N, L = tgt.shape # stands for the null context. We only supply position information for characters after . null_ctx = self.text_embed(tgt[:, :1]) if tgt_query is None: tgt_query = pos_query[:, :L] tgt_emb = pos_query[:, :L - 1] + self.text_embed(tgt[:, 1:]) tgt_emb = self.dropout(torch.cat([null_ctx, tgt_emb], dim=1)) tgt_query = self.dropout(tgt_query) return self.decoder(tgt_query, tgt_emb, memory, tgt_query_mask, tgt_mask, tgt_padding_mask) def forward(self, x, data=None, pos_query=None): if self.training: return self.training_step([x, pos_query, data[0]]) else: return self.forward_test(x, pos_query) def forward_test(self, memory: Tensor, pos_query: Tensor = None, max_length: Optional[int] = None) -> Tensor: _device = memory.get_device() testing = max_length is None max_length = (self.max_label_length if max_length is None else min( max_length, self.max_label_length)) bs = memory.shape[0] # +1 for at end of sequence. num_steps = max_length + 1 # memory = self.encode(images) # Query positions up to `num_steps` if pos_query is None: pos_queries = self.pos_queries[:, :num_steps].expand(bs, -1, -1) else: pos_queries = pos_query # Special case for the forward permutation. Faster than using `generate_attn_masks()` tgt_mask = query_mask = torch.triu( torch.full((num_steps, num_steps), float('-inf'), device=_device), 1) self.attn_maps = [] if self.decode_ar: tgt_in = torch.full((bs, num_steps), self.pad_id, dtype=torch.long, device=_device) tgt_in[:, 0] = self.bos_id logits = [] for i in range(num_steps): j = i + 1 # next token index # Efficient decoding: # Input the context up to the ith token. We use only one query (at position = i) at a time. # This works because of the lookahead masking effect of the canonical (forward) AR context. # Past tokens have no access to future tokens, hence are fixed once computed. tgt_out = self.decode( tgt_in[:, :j], memory, tgt_mask[:j, :j], tgt_query=pos_queries[:, i:j], tgt_query_mask=query_mask[i:j, :j], pos_query=pos_queries, ) self.attn_maps.append(self.decoder.layers[-1].attn_map) # the next token probability is in the output's ith token position p_i = self.head(tgt_out) logits.append(p_i) if j < num_steps: # greedy decode. add the next token index to the target input tgt_in[:, j] = p_i.squeeze().argmax(-1) # Efficient batch decoding: If all output words have at least one EOS token, end decoding. if testing and (tgt_in == self.eos_id).any(dim=-1).all(): break logits = torch.cat(logits, dim=1) else: # No prior context, so input is just . We query all positions. tgt_in = torch.full((bs, 1), self.bos_id, dtype=torch.long, device=_device) tgt_out = self.decode(tgt_in, memory, tgt_query=pos_queries, pos_query=pos_queries) logits = self.head(tgt_out) if self.refine_iters: # For iterative refinement, we always use a 'cloze' mask. # We can derive it from the AR forward mask by unmasking the token context to the right. query_mask[torch.triu( torch.ones(num_steps, num_steps, dtype=torch.bool, device=_device), 2)] = 0 bos = torch.full((bs, 1), self.bos_id, dtype=torch.long, device=_device) for i in range(self.refine_iters): # Prior context is the previous output. tgt_in = torch.cat([bos, logits[:, :-1].argmax(-1)], dim=1) tgt_padding_mask = (tgt_in == self.eos_id).int().cumsum( -1) > 0 # mask tokens beyond the first EOS token. tgt_out = self.decode( tgt_in, memory, tgt_mask, tgt_padding_mask, tgt_query=pos_queries, tgt_query_mask=query_mask[:, :tgt_in.shape[1]], pos_query=pos_queries, ) logits = self.head(tgt_out) return F.softmax(logits, -1) def gen_tgt_perms(self, tgt, _device): """Generate shared permutations for the whole batch. This works because the same attention mask can be used for the shorter sequences because of the padding mask. """ # We don't permute the position of BOS, we permute EOS separately max_num_chars = tgt.shape[1] - 2 # Special handling for 1-character sequences if max_num_chars == 1: return torch.arange(3, device=_device).unsqueeze(0) perms = [torch.arange(max_num_chars, device=_device) ] if self.perm_forward else [] # Additional permutations if needed max_perms = math.factorial(max_num_chars) if self.perm_mirrored: max_perms //= 2 num_gen_perms = min(self.max_gen_perms, max_perms) # For 4-char sequences and shorter, we generate all permutations and sample from the pool to avoid collisions # Note that this code path might NEVER get executed since the labels in a mini-batch typically exceed 4 chars. if max_num_chars < 5: # Pool of permutations to sample from. We only need the first half (if complementary option is selected) # Special handling for max_num_chars == 4 which correctly divides the pool into the flipped halves if max_num_chars == 4 and self.perm_mirrored: selector = [0, 3, 4, 6, 9, 10, 12, 16, 17, 18, 19, 21] else: selector = list(range(max_perms)) perm_pool = torch.as_tensor(list( permutations(range(max_num_chars), max_num_chars)), device=_device)[selector] # If the forward permutation is always selected, no need to add it to the pool for sampling if self.perm_forward: perm_pool = perm_pool[1:] perms = torch.stack(perms) if len(perm_pool): i = self.rng.choice(len(perm_pool), size=num_gen_perms - len(perms), replace=False) perms = torch.cat([perms, perm_pool[i]]) else: perms.extend([ torch.randperm(max_num_chars, device=_device) for _ in range(num_gen_perms - len(perms)) ]) perms = torch.stack(perms) if self.perm_mirrored: # Add complementary pairs comp = perms.flip(-1) # Stack in such a way that the pairs are next to each other. perms = torch.stack([perms, comp ]).transpose(0, 1).reshape(-1, max_num_chars) # NOTE: # The only meaningful way of permuting the EOS position is by moving it one character position at a time. # However, since the number of permutations = T! and number of EOS positions = T + 1, the number of possible EOS # positions will always be much less than the number of permutations (unless a low perm_num is set). # Thus, it would be simpler to just train EOS using the full and null contexts rather than trying to evenly # distribute it across the chosen number of permutations. # Add position indices of BOS and EOS bos_idx = perms.new_zeros((len(perms), 1)) eos_idx = perms.new_full((len(perms), 1), max_num_chars + 1) perms = torch.cat([bos_idx, perms + 1, eos_idx], dim=1) # Special handling for the reverse direction. This does two things: # 1. Reverse context for the characters # 2. Null context for [EOS] (required for learning to predict [EOS] in NAR mode) if len(perms) > 1: perms[1, 1:] = max_num_chars + 1 - torch.arange(max_num_chars + 1, device=_device) return perms def generate_attn_masks(self, perm, _device): """Generate attention masks given a sequence permutation (includes pos. for bos and eos tokens) :param perm: the permutation sequence. i = 0 is always the BOS :return: lookahead attention masks """ sz = perm.shape[0] mask = torch.zeros((sz, sz), device=_device) for i in range(sz): query_idx = perm[i] masked_keys = perm[i + 1:] mask[query_idx, masked_keys] = float('-inf') content_mask = mask[:-1, :-1].clone() mask[torch.eye(sz, dtype=torch.bool, device=_device)] = float('-inf') # mask "self" query_mask = mask[1:, :-1] return content_mask, query_mask def training_step(self, batch): memory, pos_query, tgt = batch bs = memory.shape[0] if pos_query is None: pos_query = self.pos_queries.expand(bs, -1, -1) # Prepare the target sequences (input and output) tgt_perms = self.gen_tgt_perms(tgt, memory.get_device()) tgt_in = tgt[:, :-1] tgt_out = tgt[:, 1:] # The [EOS] token is not depended upon by any other token in any permutation ordering tgt_padding_mask = (tgt_in == self.pad_id) | (tgt_in == self.eos_id) loss = 0 loss_numel = 0 n = (tgt_out != self.pad_id).sum().item() for i, perm in enumerate(tgt_perms): tgt_mask, query_mask = self.generate_attn_masks( perm, memory.get_device()) out = self.decode( tgt_in, memory, tgt_mask, tgt_padding_mask, tgt_query_mask=query_mask, pos_query=pos_query, ) logits = self.head(out) if i == 0: final_out = logits loss += n * F.cross_entropy(logits.flatten(end_dim=1), tgt_out.flatten(), ignore_index=self.pad_id) loss_numel += n # After the second iteration (i.e. done with canonical and reverse orderings), # remove the [EOS] tokens for the succeeding perms if i == 1: tgt_out = torch.where(tgt_out == self.eos_id, self.pad_id, tgt_out) n = (tgt_out != self.pad_id).sum().item() loss /= loss_numel # self.log('loss', loss) return [loss, final_out]