import torch import torch.nn as nn import torch.nn.functional as F from openrec.modeling.common import Activation class ConvBNLayer(nn.Module): def __init__( self, num_channels, filter_size, num_filters, stride, padding, num_groups=1, act='hard_swish', ): super(ConvBNLayer, self).__init__() self.act = act self._conv = nn.Conv2d( in_channels=num_channels, out_channels=num_filters, kernel_size=filter_size, stride=stride, padding=padding, groups=num_groups, bias=False, ) self._batch_norm = nn.BatchNorm2d(num_filters, ) if self.act is not None: self._act = Activation(act_type=act, inplace=True) def forward(self, inputs): y = self._conv(inputs) y = self._batch_norm(y) if self.act is not None: y = self._act(y) return y class DepthwiseSeparable(nn.Module): def __init__( self, num_channels, num_filters1, num_filters2, num_groups, stride, scale, dw_size=3, padding=1, use_se=False, ): super(DepthwiseSeparable, self).__init__() self._depthwise_conv = ConvBNLayer( num_channels=num_channels, num_filters=int(num_filters1 * scale), filter_size=dw_size, stride=stride, padding=padding, num_groups=int(num_groups * scale), ) self._se = None if use_se: self._se = SEModule(int(num_filters1 * scale)) self._pointwise_conv = ConvBNLayer( num_channels=int(num_filters1 * scale), filter_size=1, num_filters=int(num_filters2 * scale), stride=1, padding=0, ) def forward(self, inputs): y = self._depthwise_conv(inputs) if self._se is not None: y = self._se(y) y = self._pointwise_conv(y) return y class MobileNetV1Enhance(nn.Module): def __init__(self, in_channels=3, scale=0.5, last_conv_stride=1, last_pool_type='max', **kwargs): super().__init__() self.scale = scale self.block_list = [] self.conv1 = ConvBNLayer( num_channels=in_channels, filter_size=3, num_filters=int(32 * scale), stride=2, padding=1, ) conv2_1 = DepthwiseSeparable( num_channels=int(32 * scale), num_filters1=32, num_filters2=64, num_groups=32, stride=1, scale=scale, ) self.block_list.append(conv2_1) conv2_2 = DepthwiseSeparable( num_channels=int(64 * scale), num_filters1=64, num_filters2=128, num_groups=64, stride=1, scale=scale, ) self.block_list.append(conv2_2) conv3_1 = DepthwiseSeparable( num_channels=int(128 * scale), num_filters1=128, num_filters2=128, num_groups=128, stride=1, scale=scale, ) self.block_list.append(conv3_1) conv3_2 = DepthwiseSeparable( num_channels=int(128 * scale), num_filters1=128, num_filters2=256, num_groups=128, stride=(2, 1), scale=scale, ) self.block_list.append(conv3_2) conv4_1 = DepthwiseSeparable( num_channels=int(256 * scale), num_filters1=256, num_filters2=256, num_groups=256, stride=1, scale=scale, ) self.block_list.append(conv4_1) conv4_2 = DepthwiseSeparable( num_channels=int(256 * scale), num_filters1=256, num_filters2=512, num_groups=256, stride=(2, 1), scale=scale, ) self.block_list.append(conv4_2) for _ in range(5): conv5 = DepthwiseSeparable( num_channels=int(512 * scale), num_filters1=512, num_filters2=512, num_groups=512, stride=1, dw_size=5, padding=2, scale=scale, use_se=False, ) self.block_list.append(conv5) conv5_6 = DepthwiseSeparable( num_channels=int(512 * scale), num_filters1=512, num_filters2=1024, num_groups=512, stride=(2, 1), dw_size=5, padding=2, scale=scale, use_se=True, ) self.block_list.append(conv5_6) conv6 = DepthwiseSeparable( num_channels=int(1024 * scale), num_filters1=1024, num_filters2=1024, num_groups=1024, stride=last_conv_stride, dw_size=5, padding=2, use_se=True, scale=scale, ) self.block_list.append(conv6) self.block_list = nn.Sequential(*self.block_list) if last_pool_type == 'avg': self.pool = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) else: self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0) self.out_channels = int(1024 * scale) def forward(self, inputs): y = self.conv1(inputs) y = self.block_list(y) y = self.pool(y) return y def hardsigmoid(x): return F.relu6(x + 3.0, inplace=True) / 6.0 class SEModule(nn.Module): def __init__(self, channel, reduction=4): super(SEModule, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv1 = nn.Conv2d( in_channels=channel, out_channels=channel // reduction, kernel_size=1, stride=1, padding=0, bias=True, ) self.conv2 = nn.Conv2d( in_channels=channel // reduction, out_channels=channel, kernel_size=1, stride=1, padding=0, bias=True, ) def forward(self, inputs): outputs = self.avg_pool(inputs) outputs = self.conv1(outputs) outputs = F.relu(outputs) outputs = self.conv2(outputs) outputs = hardsigmoid(outputs) x = torch.mul(inputs, outputs) return x