import torch from torch import nn class MTB(nn.Module): def __init__(self, cnn_num, in_channels): super(MTB, self).__init__() self.block = nn.Sequential() self.out_channels = in_channels self.cnn_num = cnn_num if self.cnn_num == 2: for i in range(self.cnn_num): self.block.add_module( 'conv_{}'.format(i), nn.Conv2d( in_channels=in_channels if i == 0 else 32 * (2**(i - 1)), out_channels=32 * (2**i), kernel_size=3, stride=2, padding=1, ), ) self.block.add_module('relu_{}'.format(i), nn.ReLU()) self.block.add_module('bn_{}'.format(i), nn.BatchNorm2d(32 * (2**i))) def forward(self, images): x = self.block(images) if self.cnn_num == 2: # (b, w, h, c) x = x.permute(0, 3, 2, 1) x_shape = x.shape x = torch.reshape( x, (x_shape[0], x_shape[1], x_shape[2] * x_shape[3])) return x