import itertools import math import numpy as np import torch from torch import nn from torch.nn import functional as F def conv3x3_block(in_planes, out_planes, stride=1): """3x3 convolution with padding.""" conv_layer = nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=1, padding=1) block = nn.Sequential( conv_layer, nn.BatchNorm2d(out_planes), nn.ReLU(inplace=True), ) return block class STNHead(nn.Module): def __init__(self, in_planes, num_ctrlpoints, activation='none'): super(STNHead, self).__init__() self.in_planes = in_planes self.num_ctrlpoints = num_ctrlpoints self.activation = activation self.stn_convnet = nn.Sequential( conv3x3_block(in_planes, 32), # 32*64 nn.MaxPool2d(kernel_size=2, stride=2), conv3x3_block(32, 64), # 16*32 nn.MaxPool2d(kernel_size=2, stride=2), conv3x3_block(64, 128), # 8*16 nn.MaxPool2d(kernel_size=2, stride=2), conv3x3_block(128, 256), # 4*8 nn.MaxPool2d(kernel_size=2, stride=2), conv3x3_block(256, 256), # 2*4, nn.MaxPool2d(kernel_size=2, stride=2), conv3x3_block(256, 256)) # 1*2 self.stn_fc1 = nn.Sequential(nn.Linear(2 * 256, 512), nn.BatchNorm1d(512), nn.ReLU(inplace=True)) self.stn_fc2 = nn.Linear(512, num_ctrlpoints * 2) self.init_weights(self.stn_convnet) self.init_weights(self.stn_fc1) self.init_stn(self.stn_fc2) def init_weights(self, module): for m in module.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): m.weight.data.normal_(0, 0.001) m.bias.data.zero_() def init_stn(self, stn_fc2): margin = 0.01 sampling_num_per_side = int(self.num_ctrlpoints / 2) ctrl_pts_x = np.linspace(margin, 1. - margin, sampling_num_per_side) ctrl_pts_y_top = np.ones(sampling_num_per_side) * margin ctrl_pts_y_bottom = np.ones(sampling_num_per_side) * (1 - margin) ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1) ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1) ctrl_points = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0).astype(np.float32) if self.activation == 'none': pass elif self.activation == 'sigmoid': ctrl_points = -np.log(1. / ctrl_points - 1.) stn_fc2.weight.data.zero_() stn_fc2.bias.data = torch.Tensor(ctrl_points).view(-1) def forward(self, x): x = self.stn_convnet(x) batch_size, _, h, w = x.size() x = x.view(batch_size, -1) img_feat = self.stn_fc1(x) x = self.stn_fc2(0.1 * img_feat) if self.activation == 'sigmoid': x = F.sigmoid(x) x = x.view(-1, self.num_ctrlpoints, 2) return x def grid_sample(input, grid, canvas=None): output = F.grid_sample(input, grid) if canvas is None: return output else: input_mask = input.data.new(input.size()).fill_(1) output_mask = F.grid_sample(input_mask, grid) padded_output = output * output_mask + canvas * (1 - output_mask) return padded_output # phi(x1, x2) = r^2 * log(r), where r = ||x1 - x2||_2 def compute_partial_repr(input_points, control_points): N = input_points.size(0) M = control_points.size(0) pairwise_diff = input_points.view(N, 1, 2) - control_points.view(1, M, 2) # original implementation, very slow # pairwise_dist = torch.sum(pairwise_diff ** 2, dim = 2) # square of distance pairwise_diff_square = pairwise_diff * pairwise_diff pairwise_dist = pairwise_diff_square[:, :, 0] + pairwise_diff_square[:, :, 1] repr_matrix = 0.5 * pairwise_dist * torch.log(pairwise_dist) # fix numerical error for 0 * log(0), substitute all nan with 0 mask = repr_matrix != repr_matrix repr_matrix.masked_fill_(mask, 0) return repr_matrix # output_ctrl_pts are specified, according to our task. def build_output_control_points(num_control_points, margins): margin_x, margin_y = margins num_ctrl_pts_per_side = num_control_points // 2 ctrl_pts_x = np.linspace(margin_x, 1.0 - margin_x, num_ctrl_pts_per_side) ctrl_pts_y_top = np.ones(num_ctrl_pts_per_side) * margin_y ctrl_pts_y_bottom = np.ones(num_ctrl_pts_per_side) * (1.0 - margin_y) ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1) ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1) # ctrl_pts_top = ctrl_pts_top[1:-1,:] # ctrl_pts_bottom = ctrl_pts_bottom[1:-1,:] output_ctrl_pts_arr = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0) output_ctrl_pts = torch.Tensor(output_ctrl_pts_arr) return output_ctrl_pts class TPSSpatialTransformer(nn.Module): def __init__( self, output_image_size, num_control_points, margins, ): super(TPSSpatialTransformer, self).__init__() self.output_image_size = output_image_size self.num_control_points = num_control_points self.margins = margins self.target_height, self.target_width = output_image_size target_control_points = build_output_control_points( num_control_points, margins) N = num_control_points # N = N - 4 # create padded kernel matrix forward_kernel = torch.zeros(N + 3, N + 3) target_control_partial_repr = compute_partial_repr( target_control_points, target_control_points) forward_kernel[:N, :N].copy_(target_control_partial_repr) forward_kernel[:N, -3].fill_(1) forward_kernel[-3, :N].fill_(1) forward_kernel[:N, -2:].copy_(target_control_points) forward_kernel[-2:, :N].copy_(target_control_points.transpose(0, 1)) # compute inverse matrix inverse_kernel = torch.inverse(forward_kernel) # create target cordinate matrix HW = self.target_height * self.target_width target_coordinate = list( itertools.product(range(self.target_height), range(self.target_width))) target_coordinate = torch.Tensor(target_coordinate) # HW x 2 Y, X = target_coordinate.split(1, dim=1) Y = Y / (self.target_height - 1) X = X / (self.target_width - 1) target_coordinate = torch.cat([X, Y], dim=1) # convert from (y, x) to (x, y) target_coordinate_partial_repr = compute_partial_repr( target_coordinate, target_control_points) target_coordinate_repr = torch.cat([ target_coordinate_partial_repr, torch.ones(HW, 1), target_coordinate ], dim=1) # register precomputed matrices self.register_buffer('inverse_kernel', inverse_kernel) self.register_buffer('padding_matrix', torch.zeros(3, 2)) self.register_buffer('target_coordinate_repr', target_coordinate_repr) self.register_buffer('target_control_points', target_control_points) def forward(self, input, source_control_points): assert source_control_points.ndimension() == 3 assert source_control_points.size(1) == self.num_control_points assert source_control_points.size(2) == 2 batch_size = source_control_points.size(0) Y = torch.cat([ source_control_points, self.padding_matrix.expand(batch_size, 3, 2) ], 1) mapping_matrix = torch.matmul(self.inverse_kernel, Y) source_coordinate = torch.matmul(self.target_coordinate_repr, mapping_matrix) grid = source_coordinate.view(-1, self.target_height, self.target_width, 2) grid = torch.clamp( grid, 0, 1) # the source_control_points may be out of [0, 1]. # the input to grid_sample is normalized [-1, 1], but what we get is [0, 1] grid = 2.0 * grid - 1.0 output_maps = grid_sample(input, grid, canvas=None) return output_maps class Aster_TPS(nn.Module): def __init__( self, in_channels, tps_inputsize=[32, 64], tps_outputsize=[32, 100], num_control_points=20, tps_margins=[0.05, 0.05], ) -> None: super().__init__() self.in_channels = in_channels #TODO self.out_channels = in_channels self.tps_inputsize = tps_inputsize self.num_control_points = num_control_points self.stn_head = STNHead( in_planes=3, num_ctrlpoints=num_control_points, ) self.tps = TPSSpatialTransformer( output_image_size=tps_outputsize, num_control_points=num_control_points, margins=tps_margins, ) def forward(self, img): stn_input = F.interpolate(img, self.tps_inputsize, mode='bilinear', align_corners=True) ctrl_points = self.stn_head(stn_input) img = self.tps(img, ctrl_points) return img