import torch from .ctc_postprocess import BaseRecLabelDecode class CELabelDecode(BaseRecLabelDecode): """Convert between text-label and text-index.""" def __init__(self, character_dict_path=None, use_space_char=False, **kwargs): super(CELabelDecode, self).__init__(character_dict_path, use_space_char) def __call__(self, preds, label=None, *args, **kwargs): if isinstance(preds, tuple) or isinstance(preds, list): preds = preds[-1] if isinstance(preds, torch.Tensor): preds = preds.numpy() preds_idx = preds.argmax(axis=-1) preds_prob = preds.max(axis=-1) text = self.decode(preds_idx, preds_prob) if label is None: return text label = self.decode(label.flatten()) return text, label def decode(self, text_index, text_prob=None): """convert text-index into text-label.""" result_list = [] batch_size = len(text_index) for batch_idx in range(batch_size): text = self.character[text_index[batch_idx]] if text_prob is not None: conf_list = text_prob[batch_idx] else: conf_list = 1.0 result_list.append((text, conf_list)) return result_list def add_special_char(self, dict_character): return dict_character