import numpy as np
import torch
from .nrtr_postprocess import NRTRLabelDecode
class IGTRLabelDecode(NRTRLabelDecode):
"""Convert between text-label and text-index."""
def __init__(self,
character_dict_path=None,
use_space_char=False,
**kwargs):
super(IGTRLabelDecode, self).__init__(character_dict_path,
use_space_char)
def __call__(self, preds, batch=None, *args, **kwargs):
if isinstance(preds, list):
if isinstance(preds[0], dict):
preds = preds[-1].detach().cpu().numpy()
if isinstance(preds, torch.Tensor):
preds = preds.detach().cpu().numpy()
elif isinstance(preds, dict):
preds = preds['align'][-1].detach().cpu().numpy()
else:
preds = preds
preds_idx = preds.argmax(axis=2)
preds_prob = preds.max(axis=2)
text = self.decode(preds_idx,
preds_prob,
is_remove_duplicate=False)
else:
preds_idx = preds[0].detach().cpu().numpy()
preds_prob = preds[1].detach().cpu().numpy()
text = self.decode(preds_idx,
preds_prob,
is_remove_duplicate=False)
else:
if isinstance(preds, torch.Tensor):
preds = preds.detach().cpu().numpy()
elif isinstance(preds, dict):
preds = preds['align'][-1].detach().cpu().numpy()
else:
preds = preds
preds_idx = preds.argmax(axis=2)
preds_idx_top5 = preds.argsort(axis=2)[:, :, -5:]
preds_prob = preds.max(axis=2)
text = self.decode(preds_idx,
preds_prob,
is_remove_duplicate=False,
idx_top5=preds_idx_top5)
if batch is None:
return text
label = batch[1]
label = self.decode(label.detach().cpu().numpy())
return text, label
def add_special_char(self, dict_character):
dict_character = [''] + dict_character + ['', '']
return dict_character
def decode(self,
text_index,
text_prob=None,
is_remove_duplicate=False,
idx_top5=None):
"""convert text-index into text-label."""
result_list = []
batch_size = len(text_index)
for batch_idx in range(batch_size):
char_list = []
char_list_top5 = []
conf_list = []
for idx in range(len(text_index[batch_idx])):
char_idx_top5 = []
try:
char_idx = self.character[int(text_index[batch_idx][idx])]
if idx_top5 is not None:
for top5_i in idx_top5[batch_idx][idx]:
char_idx_top5.append(self.character[top5_i])
except:
continue
if char_idx == '': # end
break
if char_idx == '' or char_idx == '':
continue
char_list.append(char_idx)
char_list_top5.append(char_idx_top5)
if text_prob is not None:
conf_list.append(text_prob[batch_idx][idx])
else:
conf_list.append(1)
text = ''.join(char_list)
if idx_top5 is not None:
result_list.append(
(text, [np.mean(conf_list).tolist(), char_list_top5]))
else:
result_list.append((text, np.mean(conf_list).tolist()))
return result_list