import numpy as np import torch from .nrtr_postprocess import NRTRLabelDecode class IGTRLabelDecode(NRTRLabelDecode): """Convert between text-label and text-index.""" def __init__(self, character_dict_path=None, use_space_char=False, **kwargs): super(IGTRLabelDecode, self).__init__(character_dict_path, use_space_char) def __call__(self, preds, batch=None, *args, **kwargs): if isinstance(preds, list): if isinstance(preds[0], dict): preds = preds[-1].detach().cpu().numpy() if isinstance(preds, torch.Tensor): preds = preds.detach().cpu().numpy() elif isinstance(preds, dict): preds = preds['align'][-1].detach().cpu().numpy() else: preds = preds preds_idx = preds.argmax(axis=2) preds_prob = preds.max(axis=2) text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False) else: preds_idx = preds[0].detach().cpu().numpy() preds_prob = preds[1].detach().cpu().numpy() text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False) else: if isinstance(preds, torch.Tensor): preds = preds.detach().cpu().numpy() elif isinstance(preds, dict): preds = preds['align'][-1].detach().cpu().numpy() else: preds = preds preds_idx = preds.argmax(axis=2) preds_idx_top5 = preds.argsort(axis=2)[:, :, -5:] preds_prob = preds.max(axis=2) text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False, idx_top5=preds_idx_top5) if batch is None: return text label = batch[1] label = self.decode(label.detach().cpu().numpy()) return text, label def add_special_char(self, dict_character): dict_character = [''] + dict_character + ['', ''] return dict_character def decode(self, text_index, text_prob=None, is_remove_duplicate=False, idx_top5=None): """convert text-index into text-label.""" result_list = [] batch_size = len(text_index) for batch_idx in range(batch_size): char_list = [] char_list_top5 = [] conf_list = [] for idx in range(len(text_index[batch_idx])): char_idx_top5 = [] try: char_idx = self.character[int(text_index[batch_idx][idx])] if idx_top5 is not None: for top5_i in idx_top5[batch_idx][idx]: char_idx_top5.append(self.character[top5_i]) except: continue if char_idx == '': # end break if char_idx == '' or char_idx == '': continue char_list.append(char_idx) char_list_top5.append(char_idx_top5) if text_prob is not None: conf_list.append(text_prob[batch_idx][idx]) else: conf_list.append(1) text = ''.join(char_list) if idx_top5 is not None: result_list.append( (text, [np.mean(conf_list).tolist(), char_list_top5])) else: result_list.append((text, np.mean(conf_list).tolist())) return result_list