File size: 6,328 Bytes
2087d05 229973e 2087d05 205caac 2087d05 229973e 2087d05 229973e 2087d05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
# Debugging: Start script
print("Starting script...")
HF_TOKEN = os.environ.get("HF_TOKEN")
if HF_TOKEN is None:
print("Warning: HF_TOKEN is not set!")
PASSWORD = os.getenv("APP_PASSWORD", "mysecretpassword") # Set your desired password here or via environment variable
DESCRIPTION = "# FT of Lama"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
print("Warning: No GPU available. This model cannot run on CPU.")
else:
print("GPU is available!")
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
# Debugging: GPU check passed, loading model
if torch.cuda.is_available():
model_id = "INSAIT-Institute/BgGPT-Gemma-2-9B-IT-v1.0"
try:
print("Loading model...")
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto", token=HF_TOKEN)
print("Model loaded successfully!")
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
print("Tokenizer loaded successfully!")
except Exception as e:
print(f"Error loading model or tokenizer: {e}")
raise e # Re-raise the error after logging it
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
print(f"Received message: {message}")
print(f"Chat history: {chat_history}")
conversation = []
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
try:
print("Tokenizing input...")
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
print(f"Input tokenized: {input_ids.shape}")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
print("Trimmed input tokens due to length.")
input_ids = input_ids.to(model.device)
print("Input moved to the model's device.")
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
print("Starting generation...")
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
print("Thread started for model generation.")
outputs = []
for text in streamer:
outputs.append(text)
print(f"Generated text so far: {''.join(outputs)}")
yield "".join(outputs)
except Exception as e:
print(f"Error during generation: {e}")
raise e # Re-raise the error after logging it
def password_auth(password):
if password == PASSWORD:
return gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True, value="Incorrect password. Try again.")
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
["Hello there! How are you doing?"],
["Can you explain briefly to me what is the Python programming language?"],
["Explain the plot of Cinderella in a sentence."],
["How many hours does it take a man to eat a Helicopter?"],
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
],
)
# Debugging: Interface setup
print("Setting up interface...")
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
# Create login components
with gr.Row(visible=True) as login_area:
password_input = gr.Textbox(
label="Enter Password", type="password", placeholder="Password", show_label=True
)
login_btn = gr.Button("Submit")
incorrect_password_msg = gr.Markdown("Incorrect password. Try again.", visible=False)
# Main chat interface
with gr.Column(visible=False) as chat_area:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
chat_interface.render()
# Bind login button to check password
login_btn.click(password_auth, inputs=password_input, outputs=[chat_area, incorrect_password_msg])
# Debugging: Starting queue and launching the demo
print("Launching demo...")
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True)
|