File size: 6,328 Bytes
2087d05
 
 
 
229973e
2087d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
205caac
2087d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
229973e
2087d05
 
229973e
2087d05
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

# Debugging: Start script
print("Starting script...")

HF_TOKEN = os.environ.get("HF_TOKEN")
if HF_TOKEN is None:
    print("Warning: HF_TOKEN is not set!")

PASSWORD = os.getenv("APP_PASSWORD", "mysecretpassword")  # Set your desired password here or via environment variable

DESCRIPTION = "# FT of Lama"

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
    print("Warning: No GPU available. This model cannot run on CPU.")
else:
    print("GPU is available!")

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

# Debugging: GPU check passed, loading model
if torch.cuda.is_available():
    model_id = "INSAIT-Institute/BgGPT-Gemma-2-9B-IT-v1.0"
    try:
        print("Loading model...")
        model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto", token=HF_TOKEN)
        print("Model loaded successfully!")
        
        print("Loading tokenizer...")
        tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
        print("Tokenizer loaded successfully!")
    except Exception as e:
        print(f"Error loading model or tokenizer: {e}")
        raise e  # Re-raise the error after logging it


@spaces.GPU
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:
    print(f"Received message: {message}")
    print(f"Chat history: {chat_history}")

    conversation = []
    for user, assistant in chat_history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": message})

    try:
        print("Tokenizing input...")
        input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
        print(f"Input tokenized: {input_ids.shape}")
        
        if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
            input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
            gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
            print("Trimmed input tokens due to length.")
        
        input_ids = input_ids.to(model.device)
        print("Input moved to the model's device.")
        
        streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
        generate_kwargs = dict(
            {"input_ids": input_ids},
            streamer=streamer,
            max_new_tokens=max_new_tokens,
            do_sample=True,
            top_p=top_p,
            top_k=top_k,
            temperature=temperature,
            num_beams=1,
            repetition_penalty=repetition_penalty,
        )
        
        print("Starting generation...")
        t = Thread(target=model.generate, kwargs=generate_kwargs)
        t.start()
        print("Thread started for model generation.")
        
        outputs = []
        for text in streamer:
            outputs.append(text)
            print(f"Generated text so far: {''.join(outputs)}")
            yield "".join(outputs)
    
    except Exception as e:
        print(f"Error during generation: {e}")
        raise e  # Re-raise the error after logging it


def password_auth(password):
    if password == PASSWORD:
        return gr.update(visible=True), gr.update(visible=False)
    else:
        return gr.update(visible=False), gr.update(visible=True, value="Incorrect password. Try again.")

chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.6,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.9,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.2,
        ),
    ],
    stop_btn=None,
    examples=[
        ["Hello there! How are you doing?"],
        ["Can you explain briefly to me what is the Python programming language?"],
        ["Explain the plot of Cinderella in a sentence."],
        ["How many hours does it take a man to eat a Helicopter?"],
        ["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
    ],
)

# Debugging: Interface setup
print("Setting up interface...")

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    
    # Create login components
    with gr.Row(visible=True) as login_area:
        password_input = gr.Textbox(
            label="Enter Password", type="password", placeholder="Password", show_label=True
        )
        login_btn = gr.Button("Submit")
        incorrect_password_msg = gr.Markdown("Incorrect password. Try again.", visible=False)
    
    # Main chat interface
    with gr.Column(visible=False) as chat_area:
        gr.Markdown(DESCRIPTION)
        gr.DuplicateButton(
            value="Duplicate Space for private use",
            elem_id="duplicate-button",
            visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
        )
        chat_interface.render()
    
    # Bind login button to check password
    login_btn.click(password_auth, inputs=password_input, outputs=[chat_area, incorrect_password_msg])

# Debugging: Starting queue and launching the demo
print("Launching demo...")

if __name__ == "__main__":
    demo.queue(max_size=20).launch(share=True)