Spaces:
Sleeping
Sleeping
Commit
·
ddfd741
1
Parent(s):
1e7ebeb
better graph
Browse files- psychohistory.py +107 -84
psychohistory.py
CHANGED
@@ -6,158 +6,181 @@ import json
|
|
6 |
import sys
|
7 |
import random
|
8 |
|
9 |
-
def generate_tree(current_x, current_y, depth, max_depth, max_nodes, x_range, G, parent=None, node_count_per_depth=None):
|
10 |
-
"""Generates a tree of nodes with positions adjusted on the x-axis, y-axis, and number of nodes on the z-axis."""
|
11 |
-
if node_count_per_depth is None:
|
12 |
-
node_count_per_depth = {}
|
13 |
-
|
14 |
-
if depth > max_depth:
|
15 |
-
return node_count_per_depth
|
16 |
-
|
17 |
-
if depth not in node_count_per_depth:
|
18 |
-
node_count_per_depth[depth] = 0
|
19 |
-
|
20 |
-
num_children = random.randint(1, max_nodes)
|
21 |
-
x_positions = [current_x + i * x_range / (num_children + 1) for i in range(num_children)]
|
22 |
-
|
23 |
-
for x in x_positions:
|
24 |
-
node_id = len(G.nodes)
|
25 |
-
node_count_per_depth[depth] += 1
|
26 |
-
prob = random.uniform(0, 1)
|
27 |
-
G.add_node(node_id, pos=(x, prob, depth))
|
28 |
-
if parent is not None:
|
29 |
-
G.add_edge(parent, node_id)
|
30 |
-
generate_tree(x, current_y + 1, depth + 1, max_depth, max_nodes, x_range, G, parent=node_id, node_count_per_depth=node_count_per_depth)
|
31 |
-
|
32 |
-
return node_count_per_depth
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
def build_graph_from_json(json_data, G):
|
38 |
-
"""Builds a graph from JSON data
|
39 |
-
|
40 |
def add_event(parent_id, event_data, depth):
|
|
|
|
|
41 |
node_id = len(G.nodes)
|
42 |
-
prob = event_data['probability'] / 100.0
|
43 |
-
# Use event_number
|
44 |
-
|
45 |
-
label = event_data['name']
|
46 |
G.add_node(node_id, pos=pos, label=label)
|
47 |
if parent_id is not None:
|
48 |
-
G.add_edge(parent_id, node_id)
|
49 |
|
|
|
50 |
subevents = event_data.get('subevents', {}).get('event', [])
|
51 |
if not isinstance(subevents, list):
|
52 |
-
subevents = [subevents]
|
53 |
|
54 |
for subevent in subevents:
|
55 |
-
add_event(node_id, subevent, depth + 1)
|
56 |
-
|
57 |
-
# Iterate through all top-level events
|
58 |
-
for event_data in json_data.get('events', {}).values():
|
59 |
-
add_event(None, event_data, 0) # Add each event as a root node
|
60 |
|
|
|
|
|
|
|
61 |
|
62 |
|
63 |
def find_paths(G):
|
64 |
-
"""Finds paths with highest
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
def draw_path_3d(G, path, filename='path_plot_3d.png', highlight_color='blue'):
|
99 |
-
"""Draws
|
|
|
|
|
100 |
H = G.subgraph(path).copy()
|
|
|
101 |
pos = nx.get_node_attributes(G, 'pos')
|
|
|
|
|
102 |
x_vals, y_vals, z_vals = zip(*[pos[node] for node in path])
|
103 |
|
104 |
fig = plt.figure(figsize=(16, 12))
|
105 |
ax = fig.add_subplot(111, projection='3d')
|
106 |
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
ax.scatter(x_vals, y_vals, z_vals, c=node_colors, s=700, edgecolors='black', alpha=0.7)
|
109 |
|
|
|
110 |
for edge in H.edges():
|
111 |
x_start, y_start, z_start = pos[edge[0]]
|
112 |
x_end, y_end, z_end = pos[edge[1]]
|
113 |
ax.plot([x_start, x_end], [y_start, y_end], [z_start, z_end], color=highlight_color, lw=2)
|
114 |
|
|
|
115 |
for node, (x, y, z) in pos.items():
|
116 |
if node in path:
|
117 |
ax.text(x, y, z, str(node), fontsize=12, color='black')
|
118 |
|
|
|
119 |
ax.set_xlabel('Time (weeks)')
|
120 |
ax.set_ylabel('Event Probability')
|
121 |
ax.set_zlabel('Event Number')
|
122 |
ax.set_title('3D Event Tree - Path')
|
123 |
|
124 |
-
plt.savefig(filename, bbox_inches='tight')
|
125 |
-
plt.close()
|
126 |
|
127 |
|
128 |
def draw_global_tree_3d(G, filename='global_tree.png'):
|
129 |
-
"""Draws the entire graph in 3D
|
|
|
130 |
pos = nx.get_node_attributes(G, 'pos')
|
131 |
labels = nx.get_node_attributes(G, 'label')
|
132 |
|
|
|
133 |
if not pos:
|
134 |
print("Graph is empty. No nodes to visualize.")
|
135 |
return
|
136 |
|
|
|
137 |
x_vals, y_vals, z_vals = zip(*pos.values())
|
|
|
138 |
fig = plt.figure(figsize=(16, 12))
|
139 |
ax = fig.add_subplot(111, projection='3d')
|
140 |
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
ax.scatter(x_vals, y_vals, z_vals, c=node_colors, s=700, edgecolors='black', alpha=0.7)
|
143 |
|
|
|
144 |
for edge in G.edges():
|
145 |
x_start, y_start, z_start = pos[edge[0]]
|
146 |
x_end, y_end, z_end = pos[edge[1]]
|
147 |
ax.plot([x_start, x_end], [y_start, y_end], [z_start, z_end], color='gray', lw=2)
|
148 |
|
|
|
149 |
for node, (x, y, z) in pos.items():
|
150 |
label = labels.get(node, f"{node}")
|
151 |
ax.text(x, y, z, label, fontsize=12, color='black')
|
152 |
|
|
|
153 |
ax.set_xlabel('Time')
|
154 |
ax.set_ylabel('Probability')
|
155 |
ax.set_zlabel('Event Number')
|
156 |
ax.set_title('3D Event Tree')
|
157 |
|
158 |
-
plt.savefig(filename, bbox_inches='tight')
|
159 |
-
plt.close()
|
160 |
-
|
161 |
|
162 |
def main(json_data):
|
163 |
G = nx.DiGraph()
|
@@ -189,4 +212,4 @@ def main(json_data):
|
|
189 |
if shortest_path:
|
190 |
draw_path_3d(G, shortest_path, 'shortest_duration_path.png', 'purple')
|
191 |
|
192 |
-
return 'global_tree.png' # Return the filename of the global tree
|
|
|
6 |
import sys
|
7 |
import random
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
def build_graph_from_json(json_data, G):
|
10 |
+
"""Builds a graph from JSON data."""
|
|
|
11 |
def add_event(parent_id, event_data, depth):
|
12 |
+
"""Recursively adds events and subevents to the graph."""
|
13 |
+
# Add the current event node
|
14 |
node_id = len(G.nodes)
|
15 |
+
prob = event_data['probability'] / 100.0 # Convert percentage to probability
|
16 |
+
pos = (depth, prob, event_data['event_number']) # Use event_number for z position
|
17 |
+
label = event_data['name'] # Use event name as label
|
|
|
18 |
G.add_node(node_id, pos=pos, label=label)
|
19 |
if parent_id is not None:
|
20 |
+
G.add_edge(parent_id, node_id)
|
21 |
|
22 |
+
# Add child events
|
23 |
subevents = event_data.get('subevents', {}).get('event', [])
|
24 |
if not isinstance(subevents, list):
|
25 |
+
subevents = [subevents] # Ensure subevents is a list
|
26 |
|
27 |
for subevent in subevents:
|
28 |
+
add_event(node_id, subevent, depth + 1)
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
# Start from the root event (assuming there's only one top-level event)
|
31 |
+
root_event = list(json_data.get('events', {}).values())[0]
|
32 |
+
add_event(None, root_event, 0)
|
33 |
|
34 |
|
35 |
def find_paths(G):
|
36 |
+
"""Finds the paths with the highest and lowest average probability,
|
37 |
+
and the longest and shortest durations in graph G."""
|
38 |
+
best_path = None
|
39 |
+
worst_path = None
|
40 |
+
longest_duration_path = None
|
41 |
+
shortest_duration_path = None
|
42 |
+
best_mean_prob = -1
|
43 |
+
worst_mean_prob = float('inf')
|
44 |
+
max_duration = -1
|
45 |
+
min_duration = float('inf')
|
46 |
+
|
47 |
+
for source in G.nodes:
|
48 |
+
for target in G.nodes:
|
49 |
+
if source != target:
|
50 |
+
all_paths = list(nx.all_simple_paths(G, source=source, target=target))
|
51 |
+
for path in all_paths:
|
52 |
+
# Check if all nodes in the path have the 'pos' attribute
|
53 |
+
if not all('pos' in G.nodes[node] for node in path):
|
54 |
+
continue # Skip paths with nodes missing the 'pos' attribute
|
55 |
+
|
56 |
+
# Calculate the mean probability of the path
|
57 |
+
probabilities = [G.nodes[node]['pos'][1] for node in path] # Get node probabilities
|
58 |
+
mean_prob = np.mean(probabilities)
|
59 |
+
|
60 |
+
# Evaluate path with the highest mean probability
|
61 |
+
if mean_prob > best_mean_prob:
|
62 |
+
best_mean_prob = mean_prob
|
63 |
+
best_path = path
|
64 |
+
|
65 |
+
# Evaluate path with the lowest mean probability
|
66 |
+
if mean_prob < worst_mean_prob:
|
67 |
+
worst_mean_prob = mean_prob
|
68 |
+
worst_path = path
|
69 |
+
|
70 |
+
# Calculate path duration
|
71 |
+
x_positions = [G.nodes[node]['pos'][0] for node in path]
|
72 |
+
duration = max(x_positions) - min(x_positions)
|
73 |
+
|
74 |
+
# Evaluate path with the longest duration
|
75 |
+
if duration > max_duration:
|
76 |
+
max_duration = duration
|
77 |
+
longest_duration_path = path
|
78 |
+
|
79 |
+
# Evaluate path with the shortest duration
|
80 |
+
if duration < min_duration:
|
81 |
+
min_duration = duration
|
82 |
+
shortest_duration_path = path
|
83 |
+
|
84 |
+
return best_path, best_mean_prob, worst_path, worst_mean_prob, longest_duration_path, shortest_duration_path
|
85 |
|
86 |
def draw_path_3d(G, path, filename='path_plot_3d.png', highlight_color='blue'):
|
87 |
+
"""Draws only the specific path in 3D using networkx and matplotlib
|
88 |
+
and saves the figure to a file."""
|
89 |
+
# Create a subgraph containing only the nodes and edges of the path
|
90 |
H = G.subgraph(path).copy()
|
91 |
+
|
92 |
pos = nx.get_node_attributes(G, 'pos')
|
93 |
+
|
94 |
+
# Get data for 3D visualization
|
95 |
x_vals, y_vals, z_vals = zip(*[pos[node] for node in path])
|
96 |
|
97 |
fig = plt.figure(figsize=(16, 12))
|
98 |
ax = fig.add_subplot(111, projection='3d')
|
99 |
|
100 |
+
# Assign colors to nodes based on probability
|
101 |
+
node_colors = []
|
102 |
+
for node in path:
|
103 |
+
prob = G.nodes[node]['pos'][1]
|
104 |
+
if prob < 0.33:
|
105 |
+
node_colors.append('red')
|
106 |
+
elif prob < 0.67:
|
107 |
+
node_colors.append('blue')
|
108 |
+
else:
|
109 |
+
node_colors.append('green')
|
110 |
+
|
111 |
+
# Draw nodes
|
112 |
ax.scatter(x_vals, y_vals, z_vals, c=node_colors, s=700, edgecolors='black', alpha=0.7)
|
113 |
|
114 |
+
# Draw edges
|
115 |
for edge in H.edges():
|
116 |
x_start, y_start, z_start = pos[edge[0]]
|
117 |
x_end, y_end, z_end = pos[edge[1]]
|
118 |
ax.plot([x_start, x_end], [y_start, y_end], [z_start, z_end], color=highlight_color, lw=2)
|
119 |
|
120 |
+
# Add labels to nodes
|
121 |
for node, (x, y, z) in pos.items():
|
122 |
if node in path:
|
123 |
ax.text(x, y, z, str(node), fontsize=12, color='black')
|
124 |
|
125 |
+
# Set labels and title
|
126 |
ax.set_xlabel('Time (weeks)')
|
127 |
ax.set_ylabel('Event Probability')
|
128 |
ax.set_zlabel('Event Number')
|
129 |
ax.set_title('3D Event Tree - Path')
|
130 |
|
131 |
+
plt.savefig(filename, bbox_inches='tight') # Save to file with adjusted margins
|
132 |
+
plt.close() # Close the figure to free resources
|
133 |
|
134 |
|
135 |
def draw_global_tree_3d(G, filename='global_tree.png'):
|
136 |
+
"""Draws the entire graph in 3D using networkx and matplotlib
|
137 |
+
and saves the figure to a file."""
|
138 |
pos = nx.get_node_attributes(G, 'pos')
|
139 |
labels = nx.get_node_attributes(G, 'label')
|
140 |
|
141 |
+
# Check if the graph is empty
|
142 |
if not pos:
|
143 |
print("Graph is empty. No nodes to visualize.")
|
144 |
return
|
145 |
|
146 |
+
# Get data for 3D visualization
|
147 |
x_vals, y_vals, z_vals = zip(*pos.values())
|
148 |
+
|
149 |
fig = plt.figure(figsize=(16, 12))
|
150 |
ax = fig.add_subplot(111, projection='3d')
|
151 |
|
152 |
+
# Assign colors to nodes based on probability
|
153 |
+
node_colors = []
|
154 |
+
for node, (x, prob, z) in pos.items():
|
155 |
+
if prob < 0.33:
|
156 |
+
node_colors.append('red')
|
157 |
+
elif prob < 0.67:
|
158 |
+
node_colors.append('blue')
|
159 |
+
else:
|
160 |
+
node_colors.append('green')
|
161 |
+
|
162 |
+
# Draw nodes
|
163 |
ax.scatter(x_vals, y_vals, z_vals, c=node_colors, s=700, edgecolors='black', alpha=0.7)
|
164 |
|
165 |
+
# Draw edges
|
166 |
for edge in G.edges():
|
167 |
x_start, y_start, z_start = pos[edge[0]]
|
168 |
x_end, y_end, z_end = pos[edge[1]]
|
169 |
ax.plot([x_start, x_end], [y_start, y_end], [z_start, z_end], color='gray', lw=2)
|
170 |
|
171 |
+
# Add labels to nodes
|
172 |
for node, (x, y, z) in pos.items():
|
173 |
label = labels.get(node, f"{node}")
|
174 |
ax.text(x, y, z, label, fontsize=12, color='black')
|
175 |
|
176 |
+
# Set labels and title
|
177 |
ax.set_xlabel('Time')
|
178 |
ax.set_ylabel('Probability')
|
179 |
ax.set_zlabel('Event Number')
|
180 |
ax.set_title('3D Event Tree')
|
181 |
|
182 |
+
plt.savefig(filename, bbox_inches='tight') # Save to file with adjusted margins
|
183 |
+
plt.close() # Close the figure to free resources
|
|
|
184 |
|
185 |
def main(json_data):
|
186 |
G = nx.DiGraph()
|
|
|
212 |
if shortest_path:
|
213 |
draw_path_3d(G, shortest_path, 'shortest_duration_path.png', 'purple')
|
214 |
|
215 |
+
return 'global_tree.png' # Return the filename of the global tree
|