File size: 878 Bytes
0e28ea3
 
 
 
 
 
 
2c597e4
0e28ea3
 
2c597e4
0e28ea3
 
 
 
 
 
 
3300af1
 
 
0e28ea3
 
3300af1
0e28ea3
3300af1
0e28ea3
8904ecb
 
0e28ea3
3300af1
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import gradio as gr
from predict import ONNXInference

PRED = []

def detect(files):
    model = ONNXInference(
        model_path="./torchFlow-ckpt.onnx",
        files=files,
        save_image=False,
        save_path="./"
    )
    res = model.run()
    img_id = res["IMG_ID"]
    pred_lab = res["PRED_LAB"],
    pred_ct = res["PRED_CT"],
    geo_tag_url =  res["GEO_TAG_URL"]
    PRED.append(pred_ct)
    
    print(res["PRED_CT"])
    return res["PRED_CT"]

with gr.Blocks() as demo:
    gr.Markdown("# DetectIt")
    with gr.Row():
        image = gr.UploadButton(
            label="Upload Image",
            file_types=[".jpg",".jpeg"],
            file_count="multiple")

        btn = gr.Button("Go")
    text = gr.Textbox(show_label=False, elem_id="result-textarea")
    btn.click(detect, inputs=[image], outputs=[text], api_name="predict")

demo.launch(share=True)