|
import gradio as gr |
|
from predict import ONNXInference |
|
|
|
PRED = [] |
|
|
|
def detect(files): |
|
model = ONNXInference( |
|
model_path="/home/neo/Downloads/torchFlow/models/torchFlow-ckpt.onnx", |
|
files=files, |
|
save_image=False, |
|
save_path="/home/neo/Downloads/torchFlow/" |
|
) |
|
res = model.run() |
|
img_id = res["IMG_ID"] |
|
pred_lab = res["PRED_LAB"], |
|
pred_ct = res["PRED_CT"], |
|
geo_tag_url = res["GEO_TAG_URL"] |
|
PRED.append(pred_ct) |
|
return f"Predicted" |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
output=gr.Image() |
|
with gr.Row(): |
|
btn = gr.UploadButton( |
|
label="Upload Image", |
|
file_types = ['.jpg','.jpeg'], |
|
file_count = "multiple") |
|
btn.upload(fn=detect, inputs=btn) |
|
with gr.Column(scale=1, min_width=600): |
|
gr.Markdown(f"Output here") |
|
if PRED is not None: |
|
gr.Markdown(f"Predicted: {PRED}") |
|
|
|
demo.launch() |