import gradio as gr from predict import ONNXInference PRED = [] def detect(files): model = ONNXInference( model_path="./torchFlow-ckpt.onnx", files=files, save_image=False, save_path="./" ) res = model.run() img_id = res["IMG_ID"] pred_lab = res["PRED_LAB"], pred_ct = res["PRED_CT"], geo_tag_url = res["GEO_TAG_URL"] PRED.append(pred_ct) return f"Predicted: {PRED}" with gr.Blocks() as demo: with gr.Row(): output=gr.File() with gr.Row(): btn = gr.UploadButton( label="Upload Image", file_types=[".jpg",".jpeg"], file_count="multiple") btn.upload(fn=detect, inputs=btn, outputs=[gr.Label()], api_name="predict") # put gr.Label() in upload(outputs=gr.Label()) demo.launch()