Franblueee commited on
Commit
8f91621
·
verified ·
1 Parent(s): c23c092

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -1
README.md CHANGED
@@ -7,4 +7,77 @@ sdk: static
7
  pinned: false
8
  ---
9
 
10
- Edit this `README.md` markdown file to author your organization card.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  pinned: false
8
  ---
9
 
10
+ **Github repository:** https://github.com/Franblueee/torchmil
11
+
12
+ [**torchmil**](https://github.com/Franblueee/torchmil) is a [PyTorch](https://pytorch.org/)-based library for deep Multiple Instance Learning (MIL).
13
+ It provides a simple, flexible, and extensible framework for working with MIL models and data.
14
+
15
+ It includes:
16
+
17
+ - A collection of popular [MIL models](https://franblueee.github.io/torchmil/api/models/).
18
+ - Different [PyTorch modules](https://franblueee.github.io/torchmil/api/nn/) frequently used in MIL models.
19
+ - Handy tools to deal with [MIL data](https://franblueee.github.io/torchmil/api/data/).
20
+ - A collection of popular [MIL datasets](https://franblueee.github.io/torchmil/api/datasets/).
21
+
22
+ ## Installation
23
+
24
+ ```bash
25
+ pip install torchmil
26
+ ```
27
+
28
+ ## Quick start
29
+
30
+ You can load a MIL dataset and train a MIL model in just a few lines of code:
31
+
32
+ ```python
33
+ from torchmil.datasets import Camelyon16MIL
34
+ from torchmil.models import ABMIL
35
+ from torchmil.utils import Trainer
36
+ from torchmil.data import collate_fn
37
+ from torch.utils.data import DataLoader
38
+
39
+ # Load the Camelyon16 dataset
40
+ dataset = Camelyon16MIL(root='data', features='UNI')
41
+ dataloader = DataLoader(dataset, batch_size=4, shuffle=True, collate_fn=collate_fn)
42
+
43
+ # Instantiate the ABMIL model and optimizer
44
+ model = ABMIL(in_shape=(2048,), criterion=torch.nn.BCEWithLogitsLoss()) # each model has its own criterion
45
+ optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
46
+
47
+ # Instantiate the Trainer
48
+ trainer = Trainer(model, optimizer, device='cuda')
49
+
50
+ # Train the model
51
+ trainer.train(dataloader, epochs=10)
52
+
53
+ # Save the model
54
+ torch.save(model.state_dict(), 'model.pth')
55
+ ```
56
+
57
+ ## Next steps
58
+
59
+ You can take a look at the [examples](https://franblueee.github.io/torchmil/examples/) to see how to use **torchmil** in practice.
60
+ To see the full list of available models, datasets, and modules, check the [API reference](https://franblueee.github.io/torchmil/api/).
61
+
62
+ ## Contributing to torchmil
63
+
64
+ We welcome contributions to **torchmil**! There several ways you can contribute:
65
+
66
+ - Reporting bugs or issues you encounter while using the library, asking questions, or requesting new features: use the [Github issues](https://github.com/Franblueee/torchmil/issues).
67
+ - Improving the documentation: if you find any part of the documentation unclear or incomplete, feel free to submit a pull request with improvements.
68
+ - If you have a new model, dataset, or utility that you think would be useful for the community, please consider submitting a pull request to add it to the library.
69
+
70
+ Take a look at [CONTRIBUTING.md](https://github.com/Franblueee/torchmil/blob/main/CONTRIBUTING.md) for more details on how to contribute.
71
+
72
+ ## Citation
73
+
74
+ If you find this library useful, please consider citing it:
75
+
76
+ ```bibtex
77
+ @misc{torchmil,
78
+ author = {Castro-Mac{\'\i}as, Francisco M and S{\'a}ez-Maldonado, Francisco Javier and Morales Alvarez, Pablo and Molina, Rafael},
79
+ title = {torchmil: A PyTorch-based library for deep Multiple Instance Learning},
80
+ year = {2025},
81
+ howpublished = {\url{https://franblueee.github.io/torchmil/}}
82
+ }
83
+ ```