File size: 4,664 Bytes
7b2b2b2
b079214
7c27268
 
 
b079214
 
7c27268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d804ea
7c27268
 
 
 
 
 
02d2686
 
 
 
de5bd2a
02d2686
de5bd2a
48d0430
7c27268
1afd902
7c27268
 
 
 
b079214
 
 
 
4cc03e0
7c27268
187c6c8
7c27268
b079214
 
 
 
bc1181d
b079214
 
 
bc1181d
b079214
 
 
 
 
 
 
 
 
 
 
 
 
bc1181d
5a76f92
b079214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c27268
 
6ceac94
b079214
7c27268
 
 
bc1181d
 
b079214
 
 
 
 
5381bee
b079214
 
bc1181d
7c27268
 
b079214
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import spaces
import tempfile
import gradio as gr
import numpy as np
import torch
from PIL import Image
import trimesh
from huggingface_hub import hf_hub_download
from depth_anything_v2.dpt import DepthAnythingV2

css = """
#img-display-container {
    max-height: 100vh;
}
#img-display-input {
    max-height: 80vh;
}
#img-display-output {
    max-height: 80vh;
}
#download {
    height: 62px;
}
"""
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
model_configs = {
    'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
    'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
    'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
    'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}
encoder2name = {
    'vits': 'Small',
    'vitb': 'Base',
    'vitl': 'Large',
    'vitg': 'Giant', # we are undergoing company review procedures to release our giant model checkpoint
}
encoder = 'vitl'
model_name = encoder2name[encoder]
model = DepthAnythingV2(**model_configs[encoder])
filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-{model_name}", filename=f"depth_anything_v2_{encoder}.pth", repo_type="model")
state_dict = torch.load(filepath, map_location="cpu")
model.load_state_dict(state_dict)
model = model.to(DEVICE).eval()

title = "# Depth-Anything-V2-DepthPop"
description = """
このツールを使用すると、写真やイラストを飛び出す絵本風にすることができます。
"""
@spaces.GPU
def predict_depth(image):
    return model.infer_image(image)

import numpy as np
import trimesh
import tempfile

def generate_point_cloud(color_img, resolution):
    depth_img = predict_depth(color_img[:, :, ::-1])
    # 画像サイズの調整
    height, width = color_img.shape[:2]
    new_height = resolution
    new_width = int(width * (new_height / height))
    
    color_img_resized = np.array(Image.fromarray(color_img).resize((new_width, new_height), Image.LANCZOS))
    depth_img_resized = np.array(Image.fromarray(depth_img).resize((new_width, new_height), Image.LANCZOS))

    # 深度の調整
    depth_min = np.min(depth_img_resized)
    depth_max = np.max(depth_img_resized)
    normalized_depth = (depth_img_resized - depth_min) / (depth_max - depth_min)
       
    # 非線形変換(必要に応じて調整)
    adjusted_depth = np.power(normalized_depth, 0.1)  # ガンマ補正
    
    # カメラの内部パラメータ(使用するカメラに基づいて調整)    
    fx, fy = 300, 300  # 焦点距離
    cx, cy = color_img_resized.shape[1] / 2, color_img_resized.shape[0] / 2  # 主点

    # メッシュグリッドの作成
    rows, cols = adjusted_depth.shape
    u, v = np.meshgrid(range(cols), range(rows))

    # 3D座標の計算(X座標を反転)
    Z = adjusted_depth
    X = -((u - cx) * Z / fx)  # X座標を反転
    Y = (v - cy) * Z / fy

    # X, Y, Z座標をスタック
    points = np.stack((X, Y, Z), axis=-1)

    # 点のリストに整形
    points = points.reshape(-1, 3)

    # 各点の色を取得
    colors = color_img_resized.reshape(-1, 3)

    # 色を0-1の範囲に正規化
    colors = colors.astype(np.float32) / 255.0

    # PointCloudオブジェクトの作成
    cloud = trimesh.PointCloud(vertices=points, colors=colors)

    # Z軸周りに180度回転を適用(時計回り)
    rotation = trimesh.transformations.rotation_matrix(np.pi, [0, 0, 1])
    cloud.apply_transform(rotation)

    # Y軸周りに180度回転を適用(上下を反転)
    flip_y = trimesh.transformations.rotation_matrix(np.pi, [0, 1, 0])
    cloud.apply_transform(flip_y)

    # GLB形式で保存
    output_path = tempfile.mktemp(suffix='.glb')
    cloud.export(output_path)

    return output_path

with gr.Blocks(css=css) as demo:
    gr.Markdown(title)
    gr.Markdown(description)
    gr.Markdown("### Depth Prediction & Point Cloud Generation")

    with gr.Row():
        input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
        resolution_slider = gr.Slider(minimum=512, maximum=1600, value=512, step=1, label="Resolution")

    submit = gr.Button(value="Compute Depth & Generate Point Cloud")
    
    output_3d = gr.Model3D(
        clear_color=[0.0, 0.0, 0.0, 0.0],
        label="3D Model",
        display_mode="point_cloud"  # ポイントクラウドモードを指定        
    )
    
    submit.click(fn=generate_point_cloud, inputs=[input_image, resolution_slider], outputs=[output_3d])

if __name__ == '__main__':
    demo.queue().launch(share=True)