File size: 5,311 Bytes
3542be4
 
 
2b32e3d
3542be4
 
 
 
c689a76
27419c1
 
3542be4
953a099
2bd18a2
953a099
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a50b44f
 
2b32e3d
 
 
27419c1
 
 
06642da
2b32e3d
 
 
 
 
 
 
 
 
 
3f48312
 
 
 
 
 
27419c1
06642da
27419c1
 
 
 
 
 
 
 
 
 
06642da
27419c1
 
 
 
 
 
 
 
 
 
 
 
 
 
2b32e3d
 
 
 
 
 
 
 
 
 
 
5826348
27419c1
2b32e3d
 
 
5826348
2b32e3d
 
 
 
 
 
 
a50b44f
 
2b32e3d
2bd18a2
a50b44f
2b32e3d
 
a50b44f
2b32e3d
a50b44f
 
 
 
953a099
a50b44f
 
 
953a099
 
a50b44f
 
2b32e3d
a50b44f
 
 
 
 
 
953a099
a50b44f
 
 
 
2b32e3d
27419c1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import spaces
import gradio as gr
import torch
from diffusers import ControlNetModel, StableDiffusionXLControlNetImg2ImgPipeline, DDIMScheduler
from PIL import Image
import os
import time

from utils.utils import load_cn_model, load_cn_config, load_tagger_model, load_lora_model, resize_image_aspect_ratio, base_generation
from utils.prompt_utils import remove_color
from utils.tagger import modelLoad, analysis


def load_model(lora_dir, cn_dir):
    device = "cuda" if torch.cuda.is_available() else "cpu"
    dtype = torch.float16
    model = "cagliostrolab/animagine-xl-3.1"
    scheduler = DDIMScheduler.from_pretrained(model, subfolder="scheduler")
    controlnet = ControlNetModel.from_pretrained(cn_dir, torch_dtype=dtype, use_safetensors=True)
    pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
        model,
        controlnet=controlnet,
        torch_dtype=dtype,
        use_safetensors=True,
        scheduler=scheduler,
    )
    pipe.load_lora_weights(lora_dir, weight_name="sdxl_BWLine.safetensors")
    pipe = pipe.to(device)
    return pipe


class Img2Img:
    def __init__(self):
        self.setup_paths()
        self.setup_models()
        self.demo = self.layout()
        self.default_nagative_prompt = "lowres, error, extra digit, fewer digits, cropped, worst quality,low quality, normal quality, jpeg artifacts, blurry"
        self.post_filter = True
        self.tagger_model = None
        self.input_image_path = None

    def setup_paths(self):
        self.path = os.getcwd()
        self.cn_dir = f"{self.path}/controlnet"
        self.tagger_dir = f"{self.path}/tagger"
        self.lora_dir = f"{self.path}/lora"
        os.makedirs(self.cn_dir, exist_ok=True)
        os.makedirs(self.tagger_dir, exist_ok=True)
        os.makedirs(self.lora_dir, exist_ok=True)

    def setup_models(self):
        load_cn_model(self.cn_dir)
        load_cn_config(self.cn_dir)
        load_tagger_model(self.tagger_dir)
        load_lora_model(self.lora_dir)


    def prompt_layout(self):
        with gr.Column():
            with gr.Row():
                self.prompt = gr.Textbox(label="prompt", lines=3)
            with gr.Row():
                self.negative_prompt = gr.Textbox(label="negative_prompt", lines=3, value=self.default_nagative_prompt)
            with gr.Row():
                self.prompt_analysis_button = gr.Button("prompt解析")

        self.prompt_analysis_button.click(
            self.process_prompt_analysis,
            inputs=[self.input_image_path],
            outputs=self.prompt
        )
        return [self.prompt, self.negative_prompt]

    def process_prompt_analysis(self, input_image_path):
        if self.tagger_model is None:
            self.tagger_model = modelLoad(self.tagger_dir)
        tags = analysis(input_image_path, self.tagger_dir, self.tagger_model)
        tags_list = tags      
        if self.post_filter:
            tags_list = remove_color(tags)
        return tags_list


    def layout(self):
        css = """
        #intro{
            max-width: 32rem;
            text-align: center;
            margin: 0 auto;
        }
        """
        with gr.Blocks(css=css) as demo:
            with gr.Row():
                with gr.Column():
                    self.input_image_path = gr.Image(label="input_image", type='filepath')
                    self.prompt, self.negative_prompt = self.prompt_layout(self.input_image_path)
                    self.controlnet_scale = gr.Slider(minimum=0.5, maximum=1.25, value=1.0, step=0.01, label="線画忠実度")
                    generate_button = gr.Button("生成")
                with gr.Column():
                    self.output_image = gr.Image(type="pil", label="出力画像")

            generate_button.click(
                fn=self.predict,
                inputs=[self.input_image_path, self.prompt, self.negative_prompt, self.controlnet_scale],
                outputs=self.output_image
            )
        return demo

    @spaces.GPU
    def predict(self, input_image_path, prompt, negative_prompt, controlnet_scale):
        pipe = load_model(self.lora_dir, self.cn_dir) 
        input_image_pil = Image.open(input_image_path)
        base_size = input_image_pil.size
        resize_image = resize_image_aspect_ratio(input_image_pil)
        resize_image_size = resize_image.size
        width, height = resize_image_size
        white_base_pil = base_generation(resize_image.size, (255, 255, 255, 255)).convert("RGB")
        generator = torch.manual_seed(0)
        last_time = time.time()

        output_image = pipe(
            image=white_base_pil,
            control_image=resize_image,
            strength=1.0,
            prompt=prompt,
            negative_prompt = negative_prompt,
            width=width,
            height=height,
            controlnet_conditioning_scale=float(controlnet_scale),
            controlnet_start=0.0,
            controlnet_end=1.0,
            generator=generator,
            num_inference_steps=30,
            guidance_scale=8.5,
            eta=1.0,
        ).images[0]
        print(f"Time taken: {time.time() - last_time}")
        output_image = output_image.resize(base_size, Image.LANCZOS)
        return output_image

img2img = Img2Img()
img2img.demo.launch(share=True)