Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import torch | |
from diffusers import ControlNetModel, StableDiffusionXLControlNetImg2ImgPipeline, ControlNetModel, AutoencoderKL | |
from PIL import Image | |
import os | |
import time | |
from utils.dl_utils import dl_cn_model, dl_cn_config, dl_tagger_model, dl_lora_model | |
from utils.image_utils import resize_image_aspect_ratio, base_generation, canny_process | |
from utils.prompt_utils import execute_prompt, remove_color, remove_duplicates | |
from utils.tagger import modelLoad, analysis | |
path = os.getcwd() | |
cn_dir = f"{path}/controlnet" | |
tagger_dir = f"{path}/tagger" | |
lora_dir = f"{path}/lora" | |
os.makedirs(cn_dir, exist_ok=True) | |
os.makedirs(tagger_dir, exist_ok=True) | |
os.makedirs(lora_dir, exist_ok=True) | |
# dl_cn_model(cn_dir) | |
# dl_cn_config(cn_dir) | |
dl_tagger_model(tagger_dir) | |
dl_lora_model(lora_dir) | |
def load_model(lora_dir, cn_dir): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
dtype = torch.float16 | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
# controlnet = ControlNetModel.from_pretrained(cn_dir, torch_dtype=dtype, use_safetensors=True) | |
controlnet = ControlNetModel.from_pretrained( | |
"diffusers/controlnet-canny-sdxl-1.0", | |
torch_dtype=torch.float16 | |
) | |
pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained( | |
"cagliostrolab/animagine-xl-3.1", controlnet=controlnet, vae=vae, torch_dtype=torch.float16 | |
) | |
pipe.load_lora_weights(lora_dir, weight_name="sdxl_BWLine.safetensors") | |
pipe.set_adapters(["sdxl_BWLine"], adapter_weights=[1.4]) | |
pipe.fuse_lora() | |
pipe = pipe.to(device) | |
return pipe | |
def predict(input_image_path, canny_image, prompt, negative_prompt, controlnet_scale): | |
pipe = load_model(lora_dir, cn_dir) | |
input_image_pil = Image.open(input_image_path) | |
base_size = input_image_pil.size | |
resize_image = resize_image_aspect_ratio(input_image_pil) | |
white_base_pil = base_generation(resize_image.size, (255, 255, 255, 255)).convert("RGB") | |
canny_image = canny_image.resize(resize_image.size, Image.LANCZOS) | |
generator = torch.manual_seed(0) | |
last_time = time.time() | |
prompt = "masterpiece, best quality, monochrome, lineart, white background, " + prompt | |
execute_tags = ["sketch", "transparent background"] | |
prompt = execute_prompt(execute_tags, prompt) | |
prompt = remove_duplicates(prompt) | |
prompt = remove_color(prompt) | |
print(prompt) | |
output_image = pipe( | |
image=white_base_pil, | |
control_image=canny_image, | |
strength=1.0, | |
prompt=prompt, | |
negative_prompt = negative_prompt, | |
controlnet_conditioning_scale=float(controlnet_scale), | |
generator=generator, | |
num_inference_steps=30, | |
eta=1.0, | |
).images[0] | |
print(f"Time taken: {time.time() - last_time}") | |
output_image = output_image.resize(base_size, Image.LANCZOS) | |
return output_image | |
class Img2Img: | |
def __init__(self): | |
self.demo = self.layout() | |
self.post_filter = True | |
self.tagger_model = None | |
self.input_image_path = None | |
self.canny_image = None | |
def process_prompt_analysis(self, input_image_path): | |
if self.tagger_model is None: | |
self.tagger_model = modelLoad(tagger_dir) | |
tags = analysis(input_image_path, tagger_dir, self.tagger_model) | |
tags_list = tags | |
if self.post_filter: | |
tags_list = remove_color(tags) | |
return tags_list | |
def _make_canny(self, img_path, canny_threshold1, canny_threshold2): | |
threshold1 = int(canny_threshold1) | |
threshold2 = int(canny_threshold2) | |
return canny_process(img_path, threshold1, threshold2) | |
def layout(self): | |
css = """ | |
#intro{ | |
max-width: 32rem; | |
text-align: center; | |
margin: 0 auto; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Row(): | |
with gr.Column(): | |
self.input_image_path = gr.Image(label="input_image", type='filepath') | |
self.canny_image = gr.Image(label="canny_image", type='pil') | |
with gr.Row(): | |
canny_threshold1 = gr.Slider(minimum=0, value=20, maximum=253, show_label=False) | |
gr.HTML(value="<span>/</span>", show_label=False) | |
canny_threshold2 = gr.Slider(minimum=0, value=120, maximum=254, show_label=False) | |
canny_generate_button = gr.Button("canny_generate", interactive=False) | |
self.prompt = gr.Textbox(label="prompt", lines=3) | |
self.negative_prompt = gr.Textbox(label="negative_prompt", lines=3, value="lowres, error, extra digit, fewer digits, cropped, worst quality,low quality, normal quality, jpeg artifacts, blurry") | |
prompt_analysis_button = gr.Button("prompt_analysis") | |
self.controlnet_scale = gr.Slider(minimum=0.5, maximum=1.25, value=1.0, step=0.01, label="controlnet_scale") | |
generate_button = gr.Button("generate") | |
with gr.Column(): | |
self.output_image = gr.Image(type="pil", label="output_image") | |
canny_generate_button.click( | |
self.process_prompt_analysis, | |
inputs=[self.input_image_path, canny_threshold1, canny_threshold2], | |
outputs=self.canny_image | |
) | |
prompt_analysis_button.click( | |
self.process_prompt_analysis, | |
inputs=[self.input_image_path], | |
outputs=self.prompt | |
) | |
generate_button.click( | |
fn=predict, | |
inputs=[self.input_image_path, self.canny_image, self.prompt, self.negative_prompt, self.controlnet_scale], | |
outputs=self.output_image | |
) | |
return demo | |
img2img = Img2Img() | |
img2img.demo.launch(share=True) | |