tori29umai's picture
app.py
e94c3ce
raw
history blame
5.05 kB
import spaces
import gradio as gr
import torch
from diffusers import ControlNetModel, StableDiffusionXLControlNetImg2ImgPipeline, DDIMScheduler
from PIL import Image
import os
import time
from utils.utils import load_cn_model, load_cn_config, load_tagger_model, load_lora_model, resize_image_aspect_ratio, base_generation
from utils.prompt_utils import remove_color
from utils.tagger import modelLoad, analysis
def load_model(lora_dir, cn_dir):
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16
model = "cagliostrolab/animagine-xl-3.1"
scheduler = DDIMScheduler.from_pretrained(model, subfolder="scheduler")
controlnet = ControlNetModel.from_pretrained(cn_dir, torch_dtype=dtype, use_safetensors=True)
pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
model,
controlnet=controlnet,
torch_dtype=dtype,
use_safetensors=True,
scheduler=scheduler,
)
pipe.load_lora_weights(lora_dir, weight_name="sdxl_BWLine.safetensors")
pipe = pipe.to(device)
return pipe
class Img2Img:
def __init__(self):
self.setup_paths()
self.setup_models()
self.demo = self.layout()
self.post_filter = True
self.tagger_model = None
self.input_image_path = None
def setup_paths(self):
self.path = os.getcwd()
self.cn_dir = f"{self.path}/controlnet"
self.tagger_dir = f"{self.path}/tagger"
self.lora_dir = f"{self.path}/lora"
os.makedirs(self.cn_dir, exist_ok=True)
os.makedirs(self.tagger_dir, exist_ok=True)
os.makedirs(self.lora_dir, exist_ok=True)
def setup_models(self):
load_cn_model(self.cn_dir)
load_cn_config(self.cn_dir)
load_tagger_model(self.tagger_dir)
load_lora_model(self.lora_dir)
def process_prompt_analysis(self, input_image_path):
if self.tagger_model is None:
self.tagger_model = modelLoad(self.tagger_dir)
tags = analysis(input_image_path, self.tagger_dir, self.tagger_model)
tags_list = tags
if self.post_filter:
tags_list = remove_color(tags)
return tags_list
def layout(self):
css = """
#intro{
max-width: 32rem;
text-align: center;
margin: 0 auto;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column():
self.input_image_path = gr.Image(label="input_image", type='filepath')
self.prompt = gr.Textbox(label="prompt", lines=3)
self.negative_prompt = gr.Textbox(label="negative_prompt", lines=3, value="lowres, error, extra digit, fewer digits, cropped, worst quality,low quality, normal quality, jpeg artifacts, blurry")
prompt_analysis_button = gr.Button("prompt解析")
self.controlnet_scale = gr.Slider(minimum=0.5, maximum=1.25, value=1.0, step=0.01, label="線画忠実度")
generate_button = gr.Button("生成")
with gr.Column():
self.output_image = gr.Image(type="pil", label="出力画像")
prompt_analysis_button.click(
self.process_prompt_analysis,
inputs=[self.input_image_path],
outputs=self.prompt
)
generate_button.click(
fn=self.predict,
inputs=[self.input_image_path, self.prompt, self.negative_prompt, self.controlnet_scale],
outputs=self.output_image
)
return demo
@spaces.GPU
def predict(self, input_image_path, prompt, negative_prompt, controlnet_scale):
# モデルのロードをここに移動
pipe = load_model(self.lora_dir, self.cn_dir)
input_image_pil = Image.open(input_image_path)
base_size = input_image_pil.size
resize_image = resize_image_aspect_ratio(input_image_pil)
resize_image_size = resize_image.size
width, height = resize_image_size
white_base_pil = base_generation(resize_image.size, (255, 255, 255, 255)).convert("RGB")
generator = torch.manual_seed(0)
last_time = time.time()
output_image = pipe(
image=white_base_pil,
control_image=resize_image,
strength=1.0,
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
controlnet_conditioning_scale=float(controlnet_scale),
controlnet_start=0.0,
controlnet_end=1.0,
generator=generator,
num_inference_steps=30,
guidance_scale=8.5,
eta=1.0,
).images[0]
print(f"Time taken: {time.time() - last_time}")
output_image = output_image.resize(base_size, Image.LANCZOS)
return output_image
img2img = Img2Img()
img2img.demo.launch(share=True)