Spaces:
Running
on
Zero
Running
on
Zero
tori29umai
commited on
Commit
•
25db6c9
1
Parent(s):
4f9226f
app.py
Browse files- app.py +34 -7
- utils/dl_utils.py +2 -2
- utils/image_utils.py +25 -6
app.py
CHANGED
@@ -7,7 +7,7 @@ import os
|
|
7 |
import time
|
8 |
|
9 |
from utils.dl_utils import dl_cn_model, dl_cn_config, dl_tagger_model, dl_lora_model
|
10 |
-
from utils.image_utils import resize_image_aspect_ratio, base_generation
|
11 |
|
12 |
from utils.prompt_utils import execute_prompt, remove_color, remove_duplicates
|
13 |
from utils.tagger import modelLoad, analysis
|
@@ -22,8 +22,8 @@ os.makedirs(cn_dir, exist_ok=True)
|
|
22 |
os.makedirs(tagger_dir, exist_ok=True)
|
23 |
os.makedirs(lora_dir, exist_ok=True)
|
24 |
|
25 |
-
dl_cn_model(cn_dir)
|
26 |
-
dl_cn_config(cn_dir)
|
27 |
dl_tagger_model(tagger_dir)
|
28 |
dl_lora_model(lora_dir)
|
29 |
|
@@ -31,7 +31,11 @@ def load_model(lora_dir, cn_dir):
|
|
31 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
32 |
dtype = torch.float16
|
33 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
34 |
-
controlnet = ControlNetModel.from_pretrained(cn_dir, torch_dtype=dtype, use_safetensors=True)
|
|
|
|
|
|
|
|
|
35 |
pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
36 |
"cagliostrolab/animagine-xl-3.1", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
|
37 |
)
|
@@ -43,12 +47,13 @@ def load_model(lora_dir, cn_dir):
|
|
43 |
|
44 |
|
45 |
@spaces.GPU
|
46 |
-
def predict(input_image_path, prompt, negative_prompt, controlnet_scale):
|
47 |
pipe = load_model(lora_dir, cn_dir)
|
48 |
input_image_pil = Image.open(input_image_path)
|
49 |
base_size = input_image_pil.size
|
50 |
resize_image = resize_image_aspect_ratio(input_image_pil)
|
51 |
white_base_pil = base_generation(resize_image.size, (255, 255, 255, 255)).convert("RGB")
|
|
|
52 |
generator = torch.manual_seed(0)
|
53 |
last_time = time.time()
|
54 |
prompt = "masterpiece, best quality, monochrome, lineart, white background, " + prompt
|
@@ -60,7 +65,7 @@ def predict(input_image_path, prompt, negative_prompt, controlnet_scale):
|
|
60 |
|
61 |
output_image = pipe(
|
62 |
image=white_base_pil,
|
63 |
-
control_image=
|
64 |
strength=1.0,
|
65 |
prompt=prompt,
|
66 |
negative_prompt = negative_prompt,
|
@@ -81,6 +86,8 @@ class Img2Img:
|
|
81 |
self.post_filter = True
|
82 |
self.tagger_model = None
|
83 |
self.input_image_path = None
|
|
|
|
|
84 |
|
85 |
def process_prompt_analysis(self, input_image_path):
|
86 |
if self.tagger_model is None:
|
@@ -91,6 +98,10 @@ class Img2Img:
|
|
91 |
tags_list = remove_color(tags)
|
92 |
return tags_list
|
93 |
|
|
|
|
|
|
|
|
|
94 |
|
95 |
def layout(self):
|
96 |
css = """
|
@@ -104,6 +115,13 @@ class Img2Img:
|
|
104 |
with gr.Row():
|
105 |
with gr.Column():
|
106 |
self.input_image_path = gr.Image(label="input_image", type='filepath')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
self.prompt = gr.Textbox(label="prompt", lines=3)
|
108 |
self.negative_prompt = gr.Textbox(label="negative_prompt", lines=3, value="lowres, error, extra digit, fewer digits, cropped, worst quality,low quality, normal quality, jpeg artifacts, blurry")
|
109 |
|
@@ -115,6 +133,12 @@ class Img2Img:
|
|
115 |
with gr.Column():
|
116 |
self.output_image = gr.Image(type="pil", label="output_image")
|
117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
prompt_analysis_button.click(
|
120 |
self.process_prompt_analysis,
|
@@ -123,9 +147,12 @@ class Img2Img:
|
|
123 |
)
|
124 |
|
125 |
|
|
|
|
|
|
|
126 |
generate_button.click(
|
127 |
fn=predict,
|
128 |
-
inputs=[self.input_image_path, self.prompt, self.negative_prompt, self.controlnet_scale],
|
129 |
outputs=self.output_image
|
130 |
)
|
131 |
return demo
|
|
|
7 |
import time
|
8 |
|
9 |
from utils.dl_utils import dl_cn_model, dl_cn_config, dl_tagger_model, dl_lora_model
|
10 |
+
from utils.image_utils import resize_image_aspect_ratio, base_generation, canny_process
|
11 |
|
12 |
from utils.prompt_utils import execute_prompt, remove_color, remove_duplicates
|
13 |
from utils.tagger import modelLoad, analysis
|
|
|
22 |
os.makedirs(tagger_dir, exist_ok=True)
|
23 |
os.makedirs(lora_dir, exist_ok=True)
|
24 |
|
25 |
+
# dl_cn_model(cn_dir)
|
26 |
+
# dl_cn_config(cn_dir)
|
27 |
dl_tagger_model(tagger_dir)
|
28 |
dl_lora_model(lora_dir)
|
29 |
|
|
|
31 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
32 |
dtype = torch.float16
|
33 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
34 |
+
# controlnet = ControlNetModel.from_pretrained(cn_dir, torch_dtype=dtype, use_safetensors=True)
|
35 |
+
controlnet = ControlNetModel.from_pretrained(
|
36 |
+
"diffusers/controlnet-canny-sdxl-1.0",
|
37 |
+
torch_dtype=torch.float16
|
38 |
+
)
|
39 |
pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
40 |
"cagliostrolab/animagine-xl-3.1", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
|
41 |
)
|
|
|
47 |
|
48 |
|
49 |
@spaces.GPU
|
50 |
+
def predict(input_image_path, canny_image, prompt, negative_prompt, controlnet_scale):
|
51 |
pipe = load_model(lora_dir, cn_dir)
|
52 |
input_image_pil = Image.open(input_image_path)
|
53 |
base_size = input_image_pil.size
|
54 |
resize_image = resize_image_aspect_ratio(input_image_pil)
|
55 |
white_base_pil = base_generation(resize_image.size, (255, 255, 255, 255)).convert("RGB")
|
56 |
+
canny_image = canny_image.resize(resize_image.size, Image.LANCZOS)
|
57 |
generator = torch.manual_seed(0)
|
58 |
last_time = time.time()
|
59 |
prompt = "masterpiece, best quality, monochrome, lineart, white background, " + prompt
|
|
|
65 |
|
66 |
output_image = pipe(
|
67 |
image=white_base_pil,
|
68 |
+
control_image=canny_image,
|
69 |
strength=1.0,
|
70 |
prompt=prompt,
|
71 |
negative_prompt = negative_prompt,
|
|
|
86 |
self.post_filter = True
|
87 |
self.tagger_model = None
|
88 |
self.input_image_path = None
|
89 |
+
self.canny_image = None
|
90 |
+
|
91 |
|
92 |
def process_prompt_analysis(self, input_image_path):
|
93 |
if self.tagger_model is None:
|
|
|
98 |
tags_list = remove_color(tags)
|
99 |
return tags_list
|
100 |
|
101 |
+
def _make_canny(self, img_path, canny_threshold1, canny_threshold2):
|
102 |
+
threshold1 = int(canny_threshold1)
|
103 |
+
threshold2 = int(canny_threshold2)
|
104 |
+
return canny_process(img_path, threshold1, threshold2)
|
105 |
|
106 |
def layout(self):
|
107 |
css = """
|
|
|
115 |
with gr.Row():
|
116 |
with gr.Column():
|
117 |
self.input_image_path = gr.Image(label="input_image", type='filepath')
|
118 |
+
self.canny_image = gr.Image(label="canny_image", type='pil')
|
119 |
+
with gr.Row():
|
120 |
+
canny_threshold1 = gr.Slider(minimum=0, value=20, maximum=253, show_label=False)
|
121 |
+
gr.HTML(value="<span>/</span>", show_label=False)
|
122 |
+
canny_threshold2 = gr.Slider(minimum=0, value=120, maximum=254, show_label=False)
|
123 |
+
canny_generate_button = gr.Button("canny_generate", interactive=False)
|
124 |
+
|
125 |
self.prompt = gr.Textbox(label="prompt", lines=3)
|
126 |
self.negative_prompt = gr.Textbox(label="negative_prompt", lines=3, value="lowres, error, extra digit, fewer digits, cropped, worst quality,low quality, normal quality, jpeg artifacts, blurry")
|
127 |
|
|
|
133 |
with gr.Column():
|
134 |
self.output_image = gr.Image(type="pil", label="output_image")
|
135 |
|
136 |
+
canny_generate_button.click(
|
137 |
+
self.process_prompt_analysis,
|
138 |
+
inputs=[self.input_image, canny_threshold1, canny_threshold2],
|
139 |
+
outputs=self.canny_image
|
140 |
+
)
|
141 |
+
|
142 |
|
143 |
prompt_analysis_button.click(
|
144 |
self.process_prompt_analysis,
|
|
|
147 |
)
|
148 |
|
149 |
|
150 |
+
|
151 |
+
|
152 |
+
|
153 |
generate_button.click(
|
154 |
fn=predict,
|
155 |
+
inputs=[self.input_image_path, self.canny_image, self.prompt, self.negative_prompt, self.controlnet_scale],
|
156 |
outputs=self.output_image
|
157 |
)
|
158 |
return demo
|
utils/dl_utils.py
CHANGED
@@ -11,7 +11,7 @@ import cv2
|
|
11 |
def dl_cn_model(model_dir):
|
12 |
folder = model_dir
|
13 |
file_name = 'diffusion_pytorch_model.safetensors'
|
14 |
-
url = "https://huggingface.co/2vXpSwA7/iroiro-lora/resolve/main/test_controlnet2/CN-
|
15 |
file_path = os.path.join(folder, file_name)
|
16 |
if not os.path.exists(file_path):
|
17 |
response = requests.get(url, allow_redirects=True)
|
@@ -57,7 +57,7 @@ def dl_tagger_model(model_dir):
|
|
57 |
|
58 |
|
59 |
def dl_lora_model(model_dir):
|
60 |
-
file_name = '
|
61 |
file_path = os.path.join(model_dir, file_name)
|
62 |
if not os.path.exists(file_path):
|
63 |
url = "https://huggingface.co/tori29umai/lineart/resolve/main/sdxl_BWLine.safetensors"
|
|
|
11 |
def dl_cn_model(model_dir):
|
12 |
folder = model_dir
|
13 |
file_name = 'diffusion_pytorch_model.safetensors'
|
14 |
+
url = " https://huggingface.co/2vXpSwA7/iroiro-lora/resolve/main/test_controlnet2/CN-anytest_v3-50000_fp16.safetensors"
|
15 |
file_path = os.path.join(folder, file_name)
|
16 |
if not os.path.exists(file_path):
|
17 |
response = requests.get(url, allow_redirects=True)
|
|
|
57 |
|
58 |
|
59 |
def dl_lora_model(model_dir):
|
60 |
+
file_name = 'sdxl_BW_Line.safetensors'
|
61 |
file_path = os.path.join(model_dir, file_name)
|
62 |
if not os.path.exists(file_path):
|
63 |
url = "https://huggingface.co/tori29umai/lineart/resolve/main/sdxl_BWLine.safetensors"
|
utils/image_utils.py
CHANGED
@@ -1,13 +1,32 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
import requests
|
4 |
-
from tqdm import tqdm
|
5 |
-
import shutil
|
6 |
-
|
7 |
from PIL import Image, ImageOps
|
8 |
import numpy as np
|
9 |
import cv2
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def resize_image_aspect_ratio(image):
|
12 |
# 元の画像サイズを取得
|
13 |
original_width, original_height = image.size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from PIL import Image, ImageOps
|
2 |
import numpy as np
|
3 |
import cv2
|
4 |
|
5 |
+
def canny_process(image_path, threshold1, threshold2):
|
6 |
+
# 画像を開き、RGBA形式に変換して透過情報を保持
|
7 |
+
img = Image.open(image_path)
|
8 |
+
img = img.convert("RGBA")
|
9 |
+
|
10 |
+
canvas_image = Image.new('RGBA', img.size, (255, 255, 255, 255))
|
11 |
+
|
12 |
+
# 画像をキャンバスにペーストし、透過部分が白色になるように設定
|
13 |
+
canvas_image.paste(img, (0, 0), img)
|
14 |
+
|
15 |
+
# RGBAからRGBに変換し、透過部分を白色にする
|
16 |
+
image_pil = canvas_image.convert("RGB")
|
17 |
+
image_np = np.array(image_pil)
|
18 |
+
|
19 |
+
# グレースケール変換
|
20 |
+
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
|
21 |
+
# Cannyエッジ検出
|
22 |
+
edges = cv2.Canny(gray, threshold1, threshold2)
|
23 |
+
|
24 |
+
canny = Image.fromarray(edges)
|
25 |
+
|
26 |
+
|
27 |
+
return canny
|
28 |
+
|
29 |
+
|
30 |
def resize_image_aspect_ratio(image):
|
31 |
# 元の画像サイズを取得
|
32 |
original_width, original_height = image.size
|