Spaces:
Running
on
Zero
Running
on
Zero
tori29umai
commited on
Commit
•
6904b31
1
Parent(s):
967d328
app.py
Browse files- app.py +5 -15
- utils/dl_utils.py +2 -2
app.py
CHANGED
@@ -28,7 +28,6 @@ dl_tagger_model(tagger_dir)
|
|
28 |
dl_lora_model(lora_dir)
|
29 |
|
30 |
def load_model(lora_dir, cn_dir):
|
31 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
32 |
dtype = torch.float16
|
33 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
34 |
controlnet = ControlNetModel.from_pretrained(cn_dir, torch_dtype=dtype, use_safetensors=True)
|
@@ -37,22 +36,20 @@ def load_model(lora_dir, cn_dir):
|
|
37 |
"cagliostrolab/animagine-xl-3.1", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
|
38 |
)
|
39 |
pipe.enable_model_cpu_offload()
|
40 |
-
pipe.load_lora_weights(lora_dir, weight_name="
|
41 |
-
# pipe = pipe.to(device)
|
42 |
return pipe
|
43 |
|
44 |
-
|
45 |
@spaces.GPU
|
46 |
def predict(input_image_path, prompt, negative_prompt, controlnet_scale):
|
47 |
pipe = load_model(lora_dir, cn_dir)
|
48 |
input_image = Image.open(input_image_path)
|
49 |
-
base_image = base_generation(input_image.size, (
|
50 |
resize_image = resize_image_aspect_ratio(input_image)
|
51 |
resize_base_image = resize_image_aspect_ratio(base_image)
|
52 |
generator = torch.manual_seed(0)
|
53 |
last_time = time.time()
|
54 |
-
prompt = "masterpiece, best quality,
|
55 |
-
execute_tags = ["
|
56 |
prompt = execute_prompt(execute_tags, prompt)
|
57 |
prompt = remove_duplicates(prompt)
|
58 |
prompt = remove_color(prompt)
|
@@ -73,12 +70,9 @@ def predict(input_image_path, prompt, negative_prompt, controlnet_scale):
|
|
73 |
output_image = output_image.resize(input_image.size, Image.LANCZOS)
|
74 |
return output_image
|
75 |
|
76 |
-
|
77 |
-
|
78 |
class Img2Img:
|
79 |
def __init__(self):
|
80 |
self.demo = self.layout()
|
81 |
-
self.post_filter = True
|
82 |
self.tagger_model = None
|
83 |
self.input_image_path = None
|
84 |
self.canny_image = None
|
@@ -88,13 +82,10 @@ class Img2Img:
|
|
88 |
if self.tagger_model is None:
|
89 |
self.tagger_model = modelLoad(tagger_dir)
|
90 |
tags = analysis(input_image_path, tagger_dir, self.tagger_model)
|
91 |
-
tags_list = tags
|
92 |
-
if self.post_filter:
|
93 |
-
tags_list = remove_color(tags)
|
94 |
return tags_list
|
95 |
|
96 |
|
97 |
-
|
98 |
def layout(self):
|
99 |
css = """
|
100 |
#intro{
|
@@ -128,6 +119,5 @@ class Img2Img:
|
|
128 |
)
|
129 |
return demo
|
130 |
|
131 |
-
|
132 |
img2img = Img2Img()
|
133 |
img2img.demo.launch(share=True)
|
|
|
28 |
dl_lora_model(lora_dir)
|
29 |
|
30 |
def load_model(lora_dir, cn_dir):
|
|
|
31 |
dtype = torch.float16
|
32 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
33 |
controlnet = ControlNetModel.from_pretrained(cn_dir, torch_dtype=dtype, use_safetensors=True)
|
|
|
36 |
"cagliostrolab/animagine-xl-3.1", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
|
37 |
)
|
38 |
pipe.enable_model_cpu_offload()
|
39 |
+
pipe.load_lora_weights(lora_dir, weight_name="lineart.safetensors")
|
|
|
40 |
return pipe
|
41 |
|
|
|
42 |
@spaces.GPU
|
43 |
def predict(input_image_path, prompt, negative_prompt, controlnet_scale):
|
44 |
pipe = load_model(lora_dir, cn_dir)
|
45 |
input_image = Image.open(input_image_path)
|
46 |
+
base_image = base_generation(input_image.size, (255, 255, 255, 255)).convert("RGB")
|
47 |
resize_image = resize_image_aspect_ratio(input_image)
|
48 |
resize_base_image = resize_image_aspect_ratio(base_image)
|
49 |
generator = torch.manual_seed(0)
|
50 |
last_time = time.time()
|
51 |
+
prompt = "masterpiece, best quality, monochrome, greyscale, lineart, white background, " + prompt
|
52 |
+
execute_tags = ["sketch", "transparent background"]
|
53 |
prompt = execute_prompt(execute_tags, prompt)
|
54 |
prompt = remove_duplicates(prompt)
|
55 |
prompt = remove_color(prompt)
|
|
|
70 |
output_image = output_image.resize(input_image.size, Image.LANCZOS)
|
71 |
return output_image
|
72 |
|
|
|
|
|
73 |
class Img2Img:
|
74 |
def __init__(self):
|
75 |
self.demo = self.layout()
|
|
|
76 |
self.tagger_model = None
|
77 |
self.input_image_path = None
|
78 |
self.canny_image = None
|
|
|
82 |
if self.tagger_model is None:
|
83 |
self.tagger_model = modelLoad(tagger_dir)
|
84 |
tags = analysis(input_image_path, tagger_dir, self.tagger_model)
|
85 |
+
tags_list = remove_color(tags)
|
|
|
|
|
86 |
return tags_list
|
87 |
|
88 |
|
|
|
89 |
def layout(self):
|
90 |
css = """
|
91 |
#intro{
|
|
|
119 |
)
|
120 |
return demo
|
121 |
|
|
|
122 |
img2img = Img2Img()
|
123 |
img2img.demo.launch(share=True)
|
utils/dl_utils.py
CHANGED
@@ -57,10 +57,10 @@ def dl_tagger_model(model_dir):
|
|
57 |
|
58 |
|
59 |
def dl_lora_model(model_dir):
|
60 |
-
file_name = '
|
61 |
file_path = os.path.join(model_dir, file_name)
|
62 |
if not os.path.exists(file_path):
|
63 |
-
url = "https://huggingface.co/tori29umai/
|
64 |
response = requests.get(url, allow_redirects=True)
|
65 |
if response.status_code == 200:
|
66 |
with open(file_path, 'wb') as f:
|
|
|
57 |
|
58 |
|
59 |
def dl_lora_model(model_dir):
|
60 |
+
file_name = 'lineart.safetensors'
|
61 |
file_path = os.path.join(model_dir, file_name)
|
62 |
if not os.path.exists(file_path):
|
63 |
+
url = "https://huggingface.co/tori29umai/lineart/resolve/main/sdxl_BWLine.safetensors"
|
64 |
response = requests.get(url, allow_redirects=True)
|
65 |
if response.status_code == 200:
|
66 |
with open(file_path, 'wb') as f:
|