Spaces:
Running
on
Zero
Running
on
Zero
tori29umai
commited on
Commit
•
f68a8d0
1
Parent(s):
d49ade0
Update app.py
Browse files
app.py
CHANGED
@@ -23,80 +23,83 @@ dl_cn_config(cn_dir)
|
|
23 |
dl_tagger_model(tagger_dir)
|
24 |
dl_lora_model(lora_dir)
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
class Img2Img:
|
27 |
def __init__(self):
|
28 |
self.demo = self.layout()
|
29 |
self.tagger_model = None
|
30 |
self.input_image_path = None
|
31 |
self.bg_removed_image = None
|
32 |
-
self.pipe = None
|
33 |
-
self.current_lora_model = None
|
34 |
-
|
35 |
-
def load_model(self, lora_model):
|
36 |
-
# 既にロードされたpipeがあり、同じLoRAモデルの場合は再利用
|
37 |
-
if self.pipe and self.current_lora_model == lora_model:
|
38 |
-
return self.pipe # キャッシュされたpipeを返す
|
39 |
-
|
40 |
-
# 新しいpipeの生成
|
41 |
-
dtype = torch.float16
|
42 |
-
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=dtype)
|
43 |
-
controlnet = ControlNetModel.from_pretrained(cn_dir, torch_dtype=dtype, use_safetensors=True)
|
44 |
-
|
45 |
-
self.pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
46 |
-
"cagliostrolab/animagine-xl-3.1", controlnet=controlnet, vae=vae, torch_dtype=dtype
|
47 |
-
)
|
48 |
-
self.pipe.enable_model_cpu_offload()
|
49 |
-
|
50 |
-
# LoRAモデルの設定
|
51 |
-
if lora_model == "とりにく風":
|
52 |
-
self.pipe.load_lora_weights(lora_dir, weight_name="tori29umai_line.safetensors")
|
53 |
-
elif lora_model == "少女漫画風":
|
54 |
-
self.pipe.load_lora_weights(lora_dir, weight_name="syoujomannga_line.safetensors")
|
55 |
-
elif lora_model == "劇画調風":
|
56 |
-
self.pipe.load_lora_weights(lora_dir, weight_name="gekiga_line.safetensors")
|
57 |
-
elif lora_model == "プレーン":
|
58 |
-
pass # プレーンの場合はLoRAを読み込まない
|
59 |
-
|
60 |
-
# 現在のLoRAモデルを保存
|
61 |
-
self.current_lora_model = lora_model
|
62 |
-
return self.pipe
|
63 |
-
|
64 |
-
@spaces.GPU(duration=120)
|
65 |
-
def predict(self, lora_model, input_image_path, prompt, negative_prompt, controlnet_scale):
|
66 |
-
# ここで新たなpipeを作成するのではなく、キャッシュしたpipeを取得
|
67 |
-
pipe = self.load_model(lora_model)
|
68 |
-
|
69 |
-
# 画像読み込みとリサイズ
|
70 |
-
input_image = Image.open(input_image_path)
|
71 |
-
base_image = base_generation(input_image.size, (255, 255, 255, 255)).convert("RGB")
|
72 |
-
resize_image = resize_image_aspect_ratio(input_image)
|
73 |
-
resize_base_image = resize_image_aspect_ratio(base_image)
|
74 |
-
generator = torch.manual_seed(0)
|
75 |
-
last_time = time.time()
|
76 |
-
|
77 |
-
# プロンプト生成
|
78 |
-
prompt = "masterpiece, best quality, monochrome, greyscale, lineart, white background, star-shaped pupils, " + prompt
|
79 |
-
execute_tags = ["realistic", "nose", "asian"]
|
80 |
-
prompt = execute_prompt(execute_tags, prompt)
|
81 |
-
prompt = remove_duplicates(prompt)
|
82 |
-
prompt = remove_color(prompt)
|
83 |
-
print(prompt)
|
84 |
-
|
85 |
-
# 画像生成
|
86 |
-
output_image = pipe(
|
87 |
-
image=resize_base_image,
|
88 |
-
control_image=resize_image,
|
89 |
-
strength=1.0,
|
90 |
-
prompt=prompt,
|
91 |
-
negative_prompt=negative_prompt,
|
92 |
-
controlnet_conditioning_scale=float(controlnet_scale),
|
93 |
-
generator=generator,
|
94 |
-
num_inference_steps=30,
|
95 |
-
eta=1.0,
|
96 |
-
).images[0]
|
97 |
-
print(f"Time taken: {time.time() - last_time}")
|
98 |
-
output_image = output_image.resize(input_image.size, Image.LANCZOS)
|
99 |
-
return output_image
|
100 |
|
101 |
def process_prompt_analysis(self, input_image_path):
|
102 |
if self.tagger_model is None:
|
@@ -147,7 +150,7 @@ class Img2Img:
|
|
147 |
)
|
148 |
|
149 |
generate_button.click(
|
150 |
-
fn=
|
151 |
inputs=[self.lora_model, self.bg_removed_image_path, self.prompt, self.negative_prompt, self.controlnet_scale],
|
152 |
outputs=self.output_image
|
153 |
)
|
|
|
23 |
dl_tagger_model(tagger_dir)
|
24 |
dl_lora_model(lora_dir)
|
25 |
|
26 |
+
# グローバル変数でpipeを管理
|
27 |
+
pipe = None
|
28 |
+
current_lora_model = None
|
29 |
+
|
30 |
+
def load_model(lora_model):
|
31 |
+
global pipe, current_lora_model
|
32 |
+
# 既にロードされたpipeがあり、同じLoRAモデルの場合は再利用
|
33 |
+
if pipe is not None and current_lora_model == lora_model:
|
34 |
+
return pipe # キャッシュされたpipeを返す
|
35 |
+
|
36 |
+
# 新しいpipeの生成
|
37 |
+
dtype = torch.float16
|
38 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=dtype)
|
39 |
+
controlnet = ControlNetModel.from_pretrained(cn_dir, torch_dtype=dtype, use_safetensors=True)
|
40 |
+
|
41 |
+
pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
42 |
+
"cagliostrolab/animagine-xl-3.1", controlnet=controlnet, vae=vae, torch_dtype=dtype
|
43 |
+
)
|
44 |
+
pipe.enable_model_cpu_offload()
|
45 |
+
|
46 |
+
# LoRAモデルの設定
|
47 |
+
if lora_model == "とりにく風":
|
48 |
+
pipe.load_lora_weights(lora_dir, weight_name="tori29umai_line.safetensors")
|
49 |
+
elif lora_model == "少女漫画風":
|
50 |
+
pipe.load_lora_weights(lora_dir, weight_name="syoujomannga_line.safetensors")
|
51 |
+
elif lora_model == "劇画調風":
|
52 |
+
pipe.load_lora_weights(lora_dir, weight_name="gekiga_line.safetensors")
|
53 |
+
elif lora_model == "プレーン":
|
54 |
+
pass # プレーンの場合はLoRAを読み込まない
|
55 |
+
|
56 |
+
# 現在のLoRAモデルを保存
|
57 |
+
current_lora_model = lora_model
|
58 |
+
return pipe
|
59 |
+
|
60 |
+
@spaces.GPU(duration=120)
|
61 |
+
def predict(lora_model, input_image_path, prompt, negative_prompt, controlnet_scale):
|
62 |
+
# pipeをグローバル変数から取得
|
63 |
+
pipe = load_model(lora_model)
|
64 |
+
|
65 |
+
# 画像読み込みとリサイズ
|
66 |
+
input_image = Image.open(input_image_path)
|
67 |
+
base_image = base_generation(input_image.size, (255, 255, 255, 255)).convert("RGB")
|
68 |
+
resize_image = resize_image_aspect_ratio(input_image)
|
69 |
+
resize_base_image = resize_image_aspect_ratio(base_image)
|
70 |
+
generator = torch.manual_seed(0)
|
71 |
+
last_time = time.time()
|
72 |
+
|
73 |
+
# プロンプト生成
|
74 |
+
prompt = "masterpiece, best quality, monochrome, greyscale, lineart, white background, star-shaped pupils, " + prompt
|
75 |
+
execute_tags = ["realistic", "nose", "asian"]
|
76 |
+
prompt = execute_prompt(execute_tags, prompt)
|
77 |
+
prompt = remove_duplicates(prompt)
|
78 |
+
prompt = remove_color(prompt)
|
79 |
+
print(prompt)
|
80 |
+
|
81 |
+
# 画像生成
|
82 |
+
output_image = pipe(
|
83 |
+
image=resize_base_image,
|
84 |
+
control_image=resize_image,
|
85 |
+
strength=1.0,
|
86 |
+
prompt=prompt,
|
87 |
+
negative_prompt=negative_prompt,
|
88 |
+
controlnet_conditioning_scale=float(controlnet_scale),
|
89 |
+
generator=generator,
|
90 |
+
num_inference_steps=30,
|
91 |
+
eta=1.0,
|
92 |
+
).images[0]
|
93 |
+
print(f"Time taken: {time.time() - last_time}")
|
94 |
+
output_image = output_image.resize(input_image.size, Image.LANCZOS)
|
95 |
+
return output_image
|
96 |
+
|
97 |
class Img2Img:
|
98 |
def __init__(self):
|
99 |
self.demo = self.layout()
|
100 |
self.tagger_model = None
|
101 |
self.input_image_path = None
|
102 |
self.bg_removed_image = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
def process_prompt_analysis(self, input_image_path):
|
105 |
if self.tagger_model is None:
|
|
|
150 |
)
|
151 |
|
152 |
generate_button.click(
|
153 |
+
fn=predict,
|
154 |
inputs=[self.lora_model, self.bg_removed_image_path, self.prompt, self.negative_prompt, self.controlnet_scale],
|
155 |
outputs=self.output_image
|
156 |
)
|