File size: 5,221 Bytes
b876688
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import torch
import numpy as np
from tqdm import tqdm
from ddpm import DDPMSampler
import logging
from config import Config, default_config

WIDTH = 512
HEIGHT = 512
LATENTS_WIDTH = WIDTH // 8
LATENTS_HEIGHT = HEIGHT // 8

logging.basicConfig(level=logging.INFO)

def generate(
    prompt,
    uncond_prompt=None,
    input_image=None,
    config: Config = default_config,
):
    with torch.no_grad():
        validate_strength(config.diffusion.strength)
        generator = initialize_generator(config.seed, config.device.device)
        context = encode_prompt(prompt, uncond_prompt, config.diffusion.do_cfg, config.tokenizer, config.models["clip"], config.device.device)
        latents = initialize_latents(input_image, config.diffusion.strength, generator, config.models, config.device.device, config.diffusion.sampler_name, config.diffusion.n_inference_steps)
        images = run_diffusion(latents, context, config.diffusion.do_cfg, config.diffusion.cfg_scale, config.models, config.device.device, config.diffusion.sampler_name, config.diffusion.n_inference_steps, generator)
        return postprocess_images(images)

def validate_strength(strength):
    if not 0 < strength <= 1:
        raise ValueError("Strength must be between 0 and 1")

def initialize_generator(seed, device):
    generator = torch.Generator(device=device)
    if seed is None:
        generator.seed()
    else:
        generator.manual_seed(seed)
    return generator

def encode_prompt(prompt, uncond_prompt, do_cfg, tokenizer, clip, device):
    clip.to(device)
    if do_cfg:
        cond_tokens = tokenizer.batch_encode_plus([prompt], padding="max_length", max_length=77).input_ids
        cond_tokens = torch.tensor(cond_tokens, dtype=torch.long, device=device)
        cond_context = clip(cond_tokens)
        uncond_tokens = tokenizer.batch_encode_plus([uncond_prompt], padding="max_length", max_length=77).input_ids
        uncond_tokens = torch.tensor(uncond_tokens, dtype=torch.long, device=device)
        uncond_context = clip(uncond_tokens)
        context = torch.cat([cond_context, uncond_context])
    else:
        tokens = tokenizer.batch_encode_plus([prompt], padding="max_length", max_length=77).input_ids
        tokens = torch.tensor(tokens, dtype=torch.long, device=device)
        context = clip(tokens)
    return context

def initialize_latents(input_image, strength, generator, models, device, sampler_name, n_inference_steps):
    if input_image is None:
        # Initialize with random noise
        latents = torch.randn((1, 4, 64, 64), generator=generator, device=device)
    else:
        # Initialize with encoded input image
        latents = encode_image(input_image, models, device)
        # Add noise based on strength
        noise = torch.randn_like(latents, generator=generator)
        latents = (1 - strength) * latents + strength * noise
    return latents

def preprocess_image(input_image):
    input_image_tensor = input_image.resize((WIDTH, HEIGHT))
    input_image_tensor = np.array(input_image_tensor)
    input_image_tensor = torch.tensor(input_image_tensor, dtype=torch.float32)
    input_image_tensor = rescale(input_image_tensor, (0, 255), (-1, 1))
    input_image_tensor = input_image_tensor.unsqueeze(0)
    input_image_tensor = input_image_tensor.permute(0, 3, 1, 2)
    return input_image_tensor

def get_sampler(sampler_name, generator, n_inference_steps):
    if sampler_name == "ddpm":
        sampler = DDPMSampler(generator)
        sampler.set_inference_timesteps(n_inference_steps)
    else:
        raise ValueError(f"Unknown sampler value {sampler_name}.")
    return sampler

def run_diffusion(latents, context, do_cfg, cfg_scale, models, device, sampler_name, n_inference_steps, generator):
    diffusion = models["diffusion"]
    diffusion.to(device)
    sampler = get_sampler(sampler_name, generator, n_inference_steps)
    timesteps = tqdm(sampler.timesteps)
    for timestep in timesteps:
        time_embedding = get_time_embedding(timestep).to(device)
        model_input = latents.repeat(2, 1, 1, 1) if do_cfg else latents
        model_output = diffusion(model_input, context, time_embedding)
        if do_cfg:
            output_cond, output_uncond = model_output.chunk(2)
            model_output = cfg_scale * (output_cond - output_uncond) + output_uncond
        latents = sampler.step(timestep, latents, model_output)
    decoder = models["decoder"]
    decoder.to(device)
    images = decoder(latents)
    return images

def postprocess_images(images):
    images = rescale(images, (-1, 1), (0, 255), clamp=True)
    images = images.permute(0, 2, 3, 1)
    images = images.to("cpu", torch.uint8).numpy()
    return images[0]

def rescale(x, old_range, new_range, clamp=False):
    old_min, old_max = old_range
    new_min, new_max = new_range
    x -= old_min
    x *= (new_max - new_min) / (old_max - old_min)
    x += new_min
    if clamp:
        x = x.clamp(new_min, new_max)
    return x

def get_time_embedding(timestep):
    freqs = torch.pow(10000, -torch.arange(start=0, end=160, dtype=torch.float32) / 160)
    x = torch.tensor([timestep], dtype=torch.float32)[:, None] * freqs[None]
    return torch.cat([torch.cos(x), torch.sin(x)], dim=-1)