Diffusion / app.py
torinriley's picture
updatwe, added mreo optiosn
b7b4c25
raw
history blame
10.9 kB
import gradio as gr
import numpy as np
import random
import torch
from PIL import Image
import os
from huggingface_hub import hf_hub_download
from pathlib import Path
import sys
# Add src directory to Python path
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from src import model_loader
from src import pipeline
from src.config import Config, DeviceConfig
from transformers import CLIPTokenizer
# Create data directory if it doesn't exist
data_dir = Path("data")
data_dir.mkdir(exist_ok=True)
# Model configuration
MODEL_REPO = "stable-diffusion-v1-5/stable-diffusion-v1-5"
MODEL_FILENAME = "v1-5-pruned-emaonly.ckpt"
model_file = data_dir / MODEL_FILENAME
# Download model if it doesn't exist
if not model_file.exists():
print(f"Downloading model from {MODEL_REPO}...")
model_file = hf_hub_download(
repo_id=MODEL_REPO,
filename=MODEL_FILENAME,
local_dir=data_dir,
local_dir_use_symlinks=False
)
print("Model downloaded successfully!")
# Device configuration
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Initialize configuration
config = Config(
device=DeviceConfig(device=device),
tokenizer=CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
)
# Load models
config.models = model_loader.load_models(str(model_file), device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def txt2img(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Update config with user settings
config.seed = seed
config.diffusion.cfg_scale = guidance_scale
config.diffusion.n_inference_steps = num_inference_steps
config.model.width = width
config.model.height = height
# Generate image
output_image = pipeline.generate(
prompt=prompt,
uncond_prompt=negative_prompt,
input_image=None,
config=config
)
# Convert numpy array to PIL Image
image = Image.fromarray(output_image)
return image, seed
def img2img(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
input_image,
strength,
progress=gr.Progress(track_tqdm=True),
):
try:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if input_image is None:
return None, seed
# Update config with user settings
config.seed = seed
config.diffusion.cfg_scale = guidance_scale
config.diffusion.n_inference_steps = num_inference_steps
config.model.width = width
config.model.height = height
config.diffusion.strength = strength
# Generate image
output_image = pipeline.generate(
prompt=prompt,
uncond_prompt=negative_prompt,
input_image=input_image,
config=config
)
# Convert numpy array to PIL Image
image = Image.fromarray(output_image)
return image, seed
except Exception as e:
print(f"Error in img2img: {str(e)}")
gr.Warning(f"Error: {str(e)}")
return None, seed
def inpaint(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
input_image,
mask_image,
strength,
progress=gr.Progress(track_tqdm=True),
):
try:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if input_image is None or mask_image is None:
gr.Warning("Both input image and mask are required for inpainting")
return None, seed
# Ensure mask is in the right format
if mask_image.mode != "L":
mask_image = mask_image.convert("L")
# Update config with user settings
config.seed = seed
config.diffusion.cfg_scale = guidance_scale
config.diffusion.n_inference_steps = num_inference_steps
config.model.width = width
config.model.height = height
config.diffusion.strength = strength
# Generate image with mask
output_image = pipeline.generate(
prompt=prompt,
uncond_prompt=negative_prompt,
input_image=input_image,
mask_image=mask_image,
config=config
)
# Convert numpy array to PIL Image
image = Image.fromarray(output_image)
return image, seed
except Exception as e:
print(f"Error in inpainting: {str(e)}")
gr.Warning(f"Error: {str(e)}")
return None, seed
examples = [
"A ultra sharp photorealtici painting of a futuristic cityscape at night with neon lights and flying cars",
"A serene mountain landscape at sunset with snow-capped peaks and a clear lake reflection",
"A detailed portrait of a cyberpunk character with glowing neon implants and holographic tattoos",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
.tabs {
margin-top: 10px;
margin-bottom: 10px;
}
.disclaimer {
font-size: 0.8em;
color: #666;
margin-top: 20px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # LiteDiffusion")
with gr.Tabs(elem_classes="tabs") as tabs:
with gr.TabItem("Text-to-Image"):
txt2img_prompt = gr.Text(
label="Prompt",
max_lines=1,
placeholder="Enter your prompt",
)
txt2img_run = gr.Button("Generate", variant="primary")
txt2img_result = gr.Image(label="Result")
with gr.TabItem("Image-to-Image"):
img2img_prompt = gr.Text(
label="Prompt",
max_lines=1,
placeholder="Enter your prompt",
)
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(label="Input Image", type="pil")
strength_slider = gr.Slider(
label="Strength",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.8,
)
img2img_run = gr.Button("Generate", variant="primary")
with gr.Column(scale=1):
img2img_result = gr.Image(label="Result")
with gr.TabItem("Inpainting"):
inpaint_prompt = gr.Text(
label="Prompt",
max_lines=1,
placeholder="Enter your prompt",
)
with gr.Row():
with gr.Column(scale=1):
inpaint_image = gr.Image(label="Input Image", type="pil")
inpaint_mask = gr.Image(label="Mask (White areas will be inpainted)", type="pil")
inpaint_strength = gr.Slider(
label="Strength",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.8,
)
inpaint_run = gr.Button("Generate", variant="primary")
with gr.Column(scale=1):
inpaint_result = gr.Image(label="Result")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=50,
)
gr.Markdown(
"By using LiteDiffusion, you agree to the terms in our [disclaimer](disclaimer.md).",
elem_classes="disclaimer"
)
# Example prompts for text to image
gr.Examples(examples=examples, inputs=[txt2img_prompt])
# Text-to-Image generation
txt2img_run.click(
fn=txt2img,
inputs=[
txt2img_prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[txt2img_result, seed],
)
# Image-to-Image generation
img2img_run.click(
fn=img2img,
inputs=[
img2img_prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
input_image,
strength_slider,
],
outputs=[img2img_result, seed],
)
# Inpainting
inpaint_run.click(
fn=inpaint,
inputs=[
inpaint_prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
inpaint_image,
inpaint_mask,
inpaint_strength,
],
outputs=[inpaint_result, seed],
)
if __name__ == "__main__":
demo.launch()