Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import random | |
import torch | |
from PIL import Image | |
import model_loader | |
import pipeline | |
from transformers import CLIPTokenizer | |
from config import Config, DeviceConfig | |
# Device configuration | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Using device: {device}") | |
# Initialize configuration | |
config = Config( | |
device=DeviceConfig(device=device), | |
tokenizer=CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32") | |
) | |
# Load models with SE blocks enabled | |
model_file = "data/v1-5-pruned-emaonly.ckpt" | |
config.models = model_loader.load_models(model_file, device, use_se=True) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def infer( | |
prompt, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
# Update config with user settings | |
config.seed = seed | |
config.diffusion.cfg_scale = guidance_scale | |
config.diffusion.n_inference_steps = num_inference_steps | |
config.model.width = width | |
config.model.height = height | |
# Generate image | |
output_image = pipeline.generate( | |
prompt=prompt, | |
uncond_prompt=negative_prompt, | |
config=config | |
) | |
# Convert numpy array to PIL Image | |
image = Image.fromarray(output_image) | |
return image, seed | |
examples = [ | |
"A ultra sharp photorealtici painting of a futuristic cityscape at night with neon lights and flying cars", | |
"A serene mountain landscape at sunset with snow-capped peaks and a clear lake reflection", | |
"A detailed portrait of a cyberpunk character with glowing neon implants and holographic tattoos", | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(" # Custom Diffusion Model Text-to-Image Generator") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0, variant="primary") | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=False, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=42, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=7.5, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=50, | |
) | |
gr.Examples(examples=examples, inputs=[prompt]) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
], | |
outputs=[result, seed], | |
) | |
if __name__ == "__main__": | |
demo.launch() |