Diffusion / app.py
torinriley's picture
updtae
74045df
import gradio as gr
import numpy as np
import random
import torch
from PIL import Image
import os
from huggingface_hub import hf_hub_download
from pathlib import Path
import sys
# Add src directory to Python path
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from src import model_loader
from src import pipeline
from src.config import Config, DeviceConfig
from transformers import CLIPTokenizer
# Create data directory if it doesn't exist
data_dir = Path("data")
data_dir.mkdir(exist_ok=True)
# Model configuration
MODEL_REPO = "stable-diffusion-v1-5/stable-diffusion-v1-5"
MODEL_FILENAME = "v1-5-pruned-emaonly.ckpt"
model_file = data_dir / MODEL_FILENAME
# Download model if it doesn't exist
if not model_file.exists():
print(f"Downloading model from {MODEL_REPO}...")
model_file = hf_hub_download(
repo_id=MODEL_REPO,
filename=MODEL_FILENAME,
local_dir=data_dir,
local_dir_use_symlinks=False
)
print("Model downloaded successfully!")
# Device configuration
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Initialize configuration
config = Config(
device=DeviceConfig(device=device),
tokenizer=CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
)
# Load models
config.models = model_loader.load_models(str(model_file), device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def txt2img(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Update config with user settings
config.seed = seed
config.diffusion.cfg_scale = guidance_scale
config.diffusion.n_inference_steps = num_inference_steps
config.model.width = width
config.model.height = height
# Generate image
output_image = pipeline.generate(
prompt=prompt,
uncond_prompt=negative_prompt,
input_image=None,
config=config
)
# Convert numpy array to PIL Image
image = Image.fromarray(output_image)
return image, seed
def img2img(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
input_image,
strength,
progress=gr.Progress(track_tqdm=True),
):
try:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if input_image is None:
return None, seed
# Update config with user settings
config.seed = seed
config.diffusion.cfg_scale = guidance_scale
config.diffusion.n_inference_steps = num_inference_steps
config.model.width = width
config.model.height = height
config.diffusion.strength = strength
# Generate image
output_image = pipeline.generate(
prompt=prompt,
uncond_prompt=negative_prompt,
input_image=input_image,
config=config
)
# Convert numpy array to PIL Image
image = Image.fromarray(output_image)
return image, seed
except Exception as e:
print(f"Error in img2img: {str(e)}")
gr.Warning(f"Error: {str(e)}")
return None, seed
def inpaint(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
input_image,
mask_image,
strength,
progress=gr.Progress(track_tqdm=True),
):
try:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if input_image is None or mask_image is None:
gr.Warning("Both input image and mask are required for inpainting")
return None, seed
# Ensure mask is in the right format
if mask_image.mode != "L":
mask_image = mask_image.convert("L")
# Update config with user settings
config.seed = seed
config.diffusion.cfg_scale = guidance_scale
config.diffusion.n_inference_steps = num_inference_steps
config.model.width = width
config.model.height = height
config.diffusion.strength = strength
# Generate image with mask
output_image = pipeline.generate(
prompt=prompt,
uncond_prompt=negative_prompt,
input_image=input_image,
mask_image=mask_image,
config=config
)
# Convert numpy array to PIL Image
image = Image.fromarray(output_image)
return image, seed
except Exception as e:
print(f"Error in inpainting: {str(e)}")
gr.Warning(f"Error: {str(e)}")
return None, seed
examples = [
"A ultra sharp photorealtici painting of a futuristic cityscape at night with neon lights and flying cars",
"A serene mountain landscape at sunset with snow-capped peaks and a clear lake reflection",
"A detailed portrait of a cyberpunk character with glowing neon implants and holographic tattoos",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
.tabs {
margin-top: 10px;
margin-bottom: 10px;
}
.disclaimer {
font-size: 0.8em;
color: #666;
margin-top: 20px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # LiteDiffusion")
with gr.Tabs(elem_classes="tabs") as tabs:
with gr.TabItem("Text-to-Image"):
txt2img_prompt = gr.Text(
label="Prompt",
max_lines=1,
placeholder="Enter your prompt",
)
txt2img_run = gr.Button("Generate", variant="primary")
txt2img_result = gr.Image(label="Result")
with gr.TabItem("Image-to-Image"):
img2img_prompt = gr.Text(
label="Prompt",
max_lines=1,
placeholder="Enter your prompt",
)
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(label="Input Image", type="pil")
strength_slider = gr.Slider(
label="Strength",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.8,
)
img2img_run = gr.Button("Generate", variant="primary")
with gr.Column(scale=1):
img2img_result = gr.Image(label="Result")
with gr.TabItem("Inpainting"):
inpaint_prompt = gr.Text(
label="Prompt",
max_lines=1,
placeholder="Enter your prompt",
)
with gr.Row():
with gr.Column(scale=1):
inpaint_image = gr.Image(label="Input Image", type="pil")
inpaint_mask = gr.Image(label="Mask (White areas will be inpainted)", type="pil")
inpaint_strength = gr.Slider(
label="Strength",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.8,
)
inpaint_run = gr.Button("Generate", variant="primary")
with gr.Column(scale=1):
inpaint_result = gr.Image(label="Result")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=50,
)
gr.Markdown(
"By using LiteDiffusion, you agree to the terms in our [disclaimer](disclaimer.md).",
elem_classes="disclaimer"
)
# Example prompts for text to image
gr.Examples(examples=examples, inputs=[txt2img_prompt])
# Text-to-Image generation
txt2img_run.click(
fn=txt2img,
inputs=[
txt2img_prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[txt2img_result, seed],
)
# Image-to-Image generation
img2img_run.click(
fn=img2img,
inputs=[
img2img_prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
input_image,
strength_slider,
],
outputs=[img2img_result, seed],
)
# Inpainting
inpaint_run.click(
fn=inpaint,
inputs=[
inpaint_prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
inpaint_image,
inpaint_mask,
inpaint_strength,
],
outputs=[inpaint_result, seed],
)
if __name__ == "__main__":
demo.launch()