Spaces:
Paused
Paused
import model_loader | |
import pipeline | |
from PIL import Image | |
from pathlib import Path | |
from transformers import CLIPTokenizer | |
import torch | |
from config import Config, default_config, DeviceConfig | |
# Device configuration | |
ALLOW_CUDA = False | |
ALLOW_MPS = False | |
device = "cpu" | |
if torch.cuda.is_available() and ALLOW_CUDA: | |
device = "cuda" | |
elif (torch.backends.mps.is_built() or torch.backends.mps.is_available()) and ALLOW_MPS: | |
device = "mps" | |
print(f"Using device: {device}") | |
# Initialize configuration | |
config = Config( | |
device=DeviceConfig(device=device), | |
seed=42, | |
tokenizer=CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32") | |
) | |
# Update diffusion parameters | |
config.diffusion.strength = 0.75 | |
config.diffusion.cfg_scale = 8.0 | |
config.diffusion.n_inference_steps = 50 | |
# Load models with SE blocks enabled | |
model_file = "data/v1-5-pruned-emaonly.ckpt" | |
config.models = model_loader.load_models(model_file, device, use_se=True) | |
# Generate image | |
prompt = "A ultra sharp photorealtici painting of a futuristic cityscape at night with neon lights and flying cars" | |
uncond_prompt = "" | |
output_image = pipeline.generate( | |
prompt=prompt, | |
uncond_prompt=uncond_prompt, | |
config=config | |
) | |
# Save output | |
output_image = Image.fromarray(output_image) | |
output_image.save("output.png") | |